

HiCOCAN-SW
Software Documentation for Windows

Rev17 / 10.08.2012

emtrion GmbH

© Copyright 2012 emtrion GmbH

All rights reserved. This documentation may not be photocopied or recorded on any electronic media

without written approval. The information contained in this documentation is subject to change

without prior notice. We assume no liability for erroneous information or its consequences.

Trademarks used from other companies refer exclusively to the products of those companies.

Revision: 17 / 10.08.2012

Rev Date/Signature Changes

1 24.06.1999/Ft Initial revision
2 15.12.1999/Ft Chapter Windows CE driver and Multitasking added
5 28.07.2000/Ft Driver section modified
6 08.05.2001/Rr HiCOCAN-PCI added
7 15.05.2002/Ny Chapter Linux added
8 26.09.2002/Rr HiCOCAN-CPCI added
9 31.01.2003/Ft Corrections, added HiCOCAN-104-2L, HiCOCAN-104-2H and new API

functions
10 30.04.2004/Rr Chapter Linux moved to a separate document
11 23.05.2007/Rr Software support for HiCOCAN-MiniPCI added
12 24.04.2008/Rr Reorganizing all manuals
13 10.07.2008/Rr HiCOCAN-PCI104 added
16 20.12.2010/Bi HiCOCAN-Mini-PCI with 4 channels added
17 10.08.2012/Ft Information about Windows x64-Versions added

Review of the complete manual

Inhaltsverzeichnis
1 Introduction .. 5

1.1 Software Package Contents ... 6

1.2 Overview of the API Functions .. 8

2 Using HiCOCAN on 64-bit Windows (Windows x64)... 10

2.1 Naming of the driver DLL .. 10

2.2 Installation of the package ... 10

2.3 Configuration Tool and CAN Monitor on Windows x64 .. 10

2.4 Using 32-bit applications under Windows x64 ... 10

2.5 Creating 64-bit applications ... 10

3 Application Interface .. 11

3.1 Basic Structure of an Application ... 11

3.1.1 Data Structures ... 11

3.1.2 Return Values of the Functions .. 13

3.2 Numbering the CAN Nodes .. 15

3.3 Communication with HiCOCAN.. 16

3.3.1 Command to the Board ... 16

3.3.2 Determining the Status Information .. 16

3.3.3 Message Transfer with the Windows Driver .. 17

3.4 Interrupt Handling ... 17

3.4.1 Interrupt Handling in the Windows Driver ... 17

3.5 Multitasking ... 18

3.6 General Functions .. 19

3.6.1 HiCOCANOpenDriver() .. 19

3.6.2 HiCOCANCloseDriver()... 19

3.6.3 HiCOCANResetDriver() .. 20

3.6.4 HiCOCANGetErrorString() ... 20

3.6.5 HiCOCANGetDriverInformation() .. 21

3.7 Functions for Controlling the CAN Nodes ... 22

3.7.1 HiCOCANOpen()... 22

3.7.2 HiCOCANClose() ... 22

3.7.3 HiCOCANStart() .. 23

3.7.4 HiCOCANStop() .. 24

3.7.5 HiCOCANReset() ... 24

3.7.6 HiCOCANResetContr() ... 25

3.7.7 HiCOCANClrOverrun() .. 26

3.7.8 HiCOCANAbortTransmit()... 27

3.7.9 HiCOCANRegisterEvent() .. 27

3.7.10 HiCOCANCanCtrl() ... 30

3.8 Timestamp .. 32

3.8.1 HiCOCANSetTimestamp() ... 32

3.9 Read/Write Functions ... 33

3.9.1 HiCOCANWrite() ... 33

3.9.2 HiCOCANRead() .. 34

3.9.3 HiCOCANReadEx() ... 35

3.10 Status Request ... 37

3.10.1 HiCOCANState() ... 37

3.10.2 HiCOCANStateTrans() .. 39

3.10.3 HiCOCANStateContr() .. 40

3.10.4 HiCOCANTraQState(), HiCOCANRecQState() ... 41

3.11 Modifying the Communication Parameters ... 43

3.11.1 HiCOCANSetAcceptMask() ... 43

3.11.2 HiCOCANSetTimingReg(), HiCOCANSetTimingRegEx(), HiCOCANSetBaud() 44

3.11.3 HiCOCANParameter() ... 46

4 Configuration Tool under Windows ... 48

4.1 The Menus and Buttons ... 49

4.1.1 File Menu .. 49

4.1.2 Boards Menu ... 50

4.1.3 Help Menu .. 52

4.1.4 The Symbol Bar .. 53

4.2 Format of the Configuration Files .. 53

4.2.1 The HiCOCAN Section .. 53

4.2.2 The Sections CAN-NODE1 and CAN-NODE2.. 53

5 Sample Application ... 55

5.1 Detailed Description ... 55

6 Troubleshooting (HiCOCAN-xxx) ... 57

6.1 Support .. 57

7 Reference .. 58

1 Introduction
HiCOCAN is the perfect solution for connecting your PC to a CAN net. No matter what applications you

wish to develop, HiCOCAN provides the performance required for your specific design needs, at the

highest bus rates.

The following HiCOCAN variants are available:

Name Description

HiCOCAN-PCI-1 Standard PC card for the PCI bus of a standard PC with one CAN
interface

HiCOCAN-PCI-2 Standard PC card for the PCI bus of a standard PC with two CAN
interfaces

HiCOCAN-CPCI Compact PCI card with two CAN interfaces

HiCOCAN-MiniPCI miniPCI type IIIA board with two CAN interfaces

HiCOCAN-MiniPCI-4CH PC/104 variant with two CAN interface, high-speed (jumpers)

HiCOCAN-104-2H PC/104 variant with two CAN interface, high-speed (jumpers)

HiCOCAN-104-2L PC/104 variant with two CAN interface, low-speed, fault-tolerant
(jumpers)

HiCOCAN-PCI104-2H PCI104 variant with two CAN interface, high-speed (jumpers)

HiCOCAN-PCI104-2L PCI104 variant with two CAN interface, low-speed, fault-tolerant
(jumpers)

All boards are shipped with a preinstalled firmware, which handles Layer 2 of the ISO/OSI reference

model. The PC's function libraries are used for communications with the firmware and so provide

optimum access to the CAN net.

This manual provides a description of the software, where no distinction is made between all the

different types of CAN boards.

1.1 Software Package Contents
The delivery of HiCOCAN-SW includes the following:

 Various drivers:

HiCOCAN PCI CPCI PCI
104

MiniPCI
(-2CH)

MiniPCI
-4CH

104-2H 104-2L

Windows 98 X X X X X X

Windows ME X X X X X X

Windows NT X X X X X X

Windows 2000 X X X X X X

Windows XP
(32bit)

X/ X X/ X X X/ X X X

Windows Vista
(32bit)

X X X X

Windows 7
(32bit)

X X X X

Windows 7
(64bit)

X X X X X

Windows CE Available for
SH4/SH3, ask

emtrion for specific
CPU support

The red Xs mark the support of the most recent driver (Version 6.x). Note that with this driver only

HiCOCAN-PCI and MiniPCI cards are supported. Also only the OSs Windows XP, Vista and 7 are

supported.

 CONFIG.EXE configuration tool

 CAN monitor (Sample application)

 Libraries and header files for the application development

 Sample application

 Documentation

Directory Content
DevFiles

 DemoApp

 hicocandemo Sources of the sample application
for boards with two channels

 Release Executable file

 Hicocandemo_4ch Sources of the sample application
for HiCOCAN-MiniPCI boards with
four channels

 Release Executable file

 DriverLibs

 HICOCAN_MiniPCI Libraries and Header files for
developing Windows applications
for HiCOCAN-MiniPCI (-2CH/-4CH)
boards

 HICOCAN_PCI104 Libraries and Header files for
developing Windows applications
for HiCOCAN-PCI104 boards

 HICOCANPCI_CPCI Libraries and Header files for
developing Windows applications
for HiCOCAN-PCI and -CPCI boards

Manuals The manuals for installation, API
description (this manual) and
technical specifications

Tools Configuration Tool and CAN
monitor

 Firmware

 HICOCAN Firmware for the HiCOCAN-
104/HiCOCAN-PCI and HiCOCAN-
CPCI board

 HiCOCANMiniPCI2ch Firmware for the HiCOCAN-MiniPCI-
2ch board

 HiCOCANMiniPCI4ch Firmware for the HiCOCAN-MiniPCI-
4ch board

1.2 Overview of the API Functions
The APIs of the drivers (on CD) for the various operating systems slightly differ from each other. This is

due to different versions of the individual drivers. For example, the latest drivers include additional

functionality.

The table below provides an overview of the windows drivers and their API functions.

If you require an API function in a driver that does not yet support this functionality, please contact us.

Remark: In the table below the driver for Windows 9x / Me / NT4 / 2000 and the 32-bit versions of

Windows XP / Vista and 7 is called Win32. The driver for the 64-bit version of Windows 7 is called x64.

Function Bpgtcpq dmp ¶ `m_pbq slbcp ¶

PC104 PCI/CPCI/PCI104

MiniPCI (-2CH/-4CH)

Win32 WinCE Win32 x64

General Functions

 HiCOCANOpenDriver X X X X

 HiCOCANCloseDriver X X X X

 HiCOCANResetDriver X X X X

 HiCOCANGetErrorString X X X X

 HiCOCANGetExtendedErrorString X X X X

 HiCOCANSetResource

 HiCOCANGetDriverInformation X X X X

Functions for Controlling the CAN nodes

 HiCOCANCanCtrl X X X

 HiCOCANOpen X X X X

 HiCOCANStart X X X X

 HiCOCANStop X X X X

 HiCOCANReset X X X X

 HiCOCANResetContr X X X X

 HiCOCANClrOverrun X X X X

 HiCOCANAbortTransmit X X X X

 HiCOCANRegisterEvent X X X X

Timestamp

 HiCOCANSetTimestamp X X X2) X2)

Read/Write Functions

 HiCOCANWrite X X X X

 HiCOCANRead X X X X

 HiCOCANReadEx X X X X

Status Request

 HiCOCANState X X X X

 HiCOCANState X4) X4)

 HiCOCANStateContr X X X X

 HiCOCANTraQState X X X X

 HiCOCANRecQState X X X X

Function Bpgtcpq dmp ¶ `m_pbq slbcp ¶

PC104 PCI/CPCI/PCI104

MiniPCI (-2CH/-4CH)

Win32 WinCE Win32 x64

Modifing the communication Parameters

 HiCOCANSetAcceptMask X X X1) X1)

 HiCOCANSetBaud X X X X

 HiCOCANSetTimingReg X X X1) X1)

 HiCOCANSetTimingRegEx X3) X3)

 HiCOCANParameter X X X1) X1)
1) Not supported by HiCOCAN-MiniPCI
2) Supported by HiCOCAN-MiniPCI with limitations
3) Only supported by HiCOCAN-MiniPCI
4) Only supported by HiCOCAN-PCI104 with fault tolerant transceiver

2 Using HiCOCAN on 64-bit Windows (Windows x64)
Starting with revision 6.1 the Windows package supports in addition to the 32-bit Editions of

Windows XP, Vista and Windows 7 also the 64-bit Editions of Windows 7.

2.1 Naming of the driver DLL
The name of the driver DLL are extended for the 64-bit driver compared with name of the 32-bit

driver. The extension is that the DLL name of the 64-bit driver contains a part _x64. The following

table shows an overview about the available driver DLLs and their names:

Board type 32-bit OS 64-bit OS

HiCOCAN-PCI /

HiCOCAN-CPCI

HiCanPci.DLL HiCanPci_x64.DLL

HiCOCAN-MiniPci

(-2CH/-4CH)

HiCanMiniPci.DLL HiCanMiniPci_x64.DLL

HiCOCAN-PCI104 HiCanPci104.DLL HiCanPci104_x64.DLL

2.2 Installation of the package
The installer package recognizes if it runs on a 32-bit or 64-bit edition of Windows and installs

automatically the correct driver revision if the driver installation is selected during the installation.

On the 64-bit editions of Windows the installer package copies automatically the 32-bit and 64-bit

DLLs of the driver API into the system to the correct locations in the system. The installer copies

also the 64-bit edition of the configuration tool and the CAN monitor on 64-bit systems.

2.3 Configuration Tool and CAN Monitor on Windows x64
As explained in the former section the installer package automatically installs the 64-bit editions of

the Configuration Tool and the CAN monitor if the installation of this tools are selected and the

installer recognizes a 64-bit edition of the Windows. In this case you have to select the 64-bit

version of the DLLs, which are located in the %WINDIR%\system32 directory (%WINDIR% specifies

the installation directory of your Windows operating system, typically C:\Windows)..

2.4 Using 32-bit applications under Windows x64
Existing 32-bit applications can use the HiCOCAN boards under Windows 7 x64 without any

changes. During the installation of the package the installer places the 32-bit version of the DLLs in

the %WINDIR%\SysWOW64 directory so that the DLLs are found automatically from the

applications. This allows the communication through HiCOCAN boards.

2.5 Creating 64-bit applications
The application programming interface (API) is the same for 64-bit applications as for 32-bit

applications. The only difference is in the linker settings. For 64-bit applications you have to use the

libraries (.lib) which contains the part _x64 in their name (32-bit applications have to use the

libraries without this part). Everything else is the same.

HiCOCAN-SW (Rev17) 11/58

3 Application Interface
The transfer constants and return values mentioned in this chapter are defined in the supplied

header file HiCOCAN.h.

3.1 Basic Structure of an Application
The basic structure of an application is shown by Fig. 1:

HiCOCANOpenDriver(...)

HiCOCANopen(...)

Start of Program

Data Transfer

HiCOCANCloseDriver(...)

End of Program

Fig. 1: Basic structure of an application

The first function HiCOCANOpenDriver executes all the necessary initializations within the

software.

The HiCOCANOpen function must be executed for each CAN node. After this, the application is

allowed to make use of all other software functions (DLL) without any restrictions.

If a CAN node was programmed with StartMode 0 for using the configuration tool ,the

HiCOCANStart function must be called before the data traffic with the CAN net is started. For

HiCOCAN-MiniPCI this command must be called anyway.

The application is closed with HiCOCANCloseDriver. The resources used by the software are then

freed again. HiCOCANClose does not have to be called for each individual node, since this is done

by the HiCOCANCloseDriver function.

3.1.1 Data Structures

In the HiCOCAN.h C header file two data structures are defined which are required for both reads

and writes and for reading the timestamps:

HiCOCAN-SW (Rev17) 12/58

typ edef struct

{

 BYTE ff; /* frame format: 0 = basic CAN, */

 /* 1 = extended CAN */

 BYTE rtr; / * 0 = normal frame, 1 = remote frame */

 BYTE dlc; /* data length 0..8 */

 DWORD id ; /* telegram ID */

 BYTE data[8]; /* data */

 sTS timestamp; /* time stamp*/

}sPCCanMsg, *psPCCanMsg;

ff specifies whether the CAN message is a Basic CAN message with 11 identifier bits

(HiCOCAN_FORMAT_BASIC) or a CAN message in the Extended CAN format with 29 identifier bits

(HiCOCAN_FORMAT_EXTENDED).

rtr indicates the frame type; HiCOCAN_REMOTE_FRAME stands for remote messages and

HiCOCAN_NORMAL_FRAME for normal messages

For HiCOCAN-MiniPCI there is an extension available. If bit 7 is set, this telegram has been received

during an overrun condition of the CAN network. This means that some telegrams are possibly

missing. If bit 6 is set, this telegram has been received with a fault tolerant error condition on the

CAN network. This bit makes only sense if there is a fault tolerant transceiver available.

The number of data bytes is entered with dlc.

The ID of a message is always specified with the id field; no matter if it is a Basic CAN message or an

Extended CAN message.

An array of bytes data[8] is reserved for the message data.

Each received message is provided with a timestamp:

typedef struct

{

 WORD day;

 BYTE hour;

 BYTE min;

 BYTE sec;

 WORD ms;

 WORD us; /* micro seconds; max. resolu tion 10µs */

}sTS, *psTS;

In addition, the C header file contains the sHiCOCANDriverInfo data structure which is required for

the HiCOCANGetDriverInformation function:

HiCOCAN-SW (Rev17) 13/58

typedef struct

{

 BYTE bStructVersion;

 LPBYTE lpbVersionStringASCII;

 LPWORD lpwVers ionStringUnicode;

 DWORD dwSubVersion;

 WORD wSizeOfPCRecQ;

} sHiCOCANDriverInfo, *psHiCOCANDriverInfo;

The bStructVersion element specifies the structure's version number. It has to be initialized by the

application (currently, to 1).

The lpbVersionStringASCII element contains a pointer to a buffer which is at least 30 bytes in size.

In this buffer, an ASCII string is stored that contains the revision number as ASCII text. For driver

version 4.5, it will look as follows: $ProjectRevision : 4.5$

The element lpwVersionStringUnicode contains a pointer to a buffer which is at least 60 bytes in

size. In this buffer, a string is stored that contains the revision number as unicode text. It will look

like the ASCII string.

The dwSubVersion element stores the version number of the kernel driver.

The wSizeOfPCRecQ element stores the size of the driver-internal receive queue.

3.1.2 Return Values of the Functions

All software functions return a 32-bit code as return value. The following is a list of all return values

available:

Return value Significance

HTX_SUCCESS No error detected

HTX_BUSOFF No error has occurred while the function is running; the

accessed CAN node is in Bus-Off state

HTX_OVERRUN No error has occurred while the function is running; the

accessed CAN node is in Overrun state

HTX_CANERROR No error has occurred while the function is running;

however, the error counters of the accessed can node are

unequal to 0.

HTX_ERROR General error

HTX_ERROR_ALREADY_OPENED CAN node already open

HTX_ERROR_ALREADY_USED CAN node already used by another process

HiCOCAN-SW (Rev17) 14/58

Return value Significance

HTX_ERROR_APPLICATION Invalid order of function calls through the application

(A driver function was called without calling

HiCOCANOpenDriver)

HTX_ERROR_BOARD_NOT_

RUNNING

Error in the bootstrap loader or the interrupt service routine

cannot be installed

HTX_ERROR_CANNOT_SET_IRQ Desired interrupt not available

HTX_ERROR_CHECKSUM_

BOOTSTRAPPER

Checksum error in the bootstrap loader area

HTX_ERROR_CHECKSUM_

FIRMWARE

Checksum error in the firmware area

HTX_ERROR_DRIVER An error occurred in the driver.

Possible causes:

 Driver has not been installed properly

 The HiCOCANOpenDriver function was not properly

called by the application

HTX_ERROR_EMPTY_QUEUE

HTX_ERROR_RECEIVEQUEUE_EMPTY

Receive queue of the specified CAN node is empty

HTX_ERROR_FULL_QUEUE

HTX_TRANSMITQUEUE_FULL

Transmit queue of the specified CAN node is full

HTX_ERROR_ILLEGAL_ID Illegal message ID

HTX_ERROR_ILLEGAL_LENGTH Illegal message length

HTX_ERROR_MULTIPLE_NODE Multiple CAN nodes in the system (e.g. if there are two

modules with the same module number)

HTX_ERROR_NOCONFIG The flash does not contain valid configuration data for the

specified CAN node.

HTX_ERROR_NOT_SUPPORTED Dslargml lmr qsnnmprcb `w rfc kmbsjc%q dgpku_pc,

HTX_ERROR_REGISTRY An error occurred while accessing the Plug and Play

configuration data in the Windows registry (the registry

could not be read).

HTX_ERROR_RESOURCE Error while accessing the Plug and Play configuration data;

no resources were allocated to the module (addresses and

interrupts)

HiCOCAN-SW (Rev17) 15/58

Return value Significance

HTX_ERROR_SYSTEM The firmware reported a system error. Bits 16 through 23 of

the retrun value contain an error number. If the error

number equals 1, the HiCOCAN module is busy. Other error

numbers are internal firmware errors. For further

information, please contact the emtrion support team.

HTX_ERROR_TRIGGERLEVELSET_

INVALID

The value specified for the trigger level dwTriggerLevelSet

is not valid, because the receive queue does not have this

size.

HTX_ERROR_TRIGGERLEVELRESET_

INVALID

The value specified for the trigger level

dwTriggerLevelReset is not valid, because it is greater or

queal to the trigger level dwTriggerLevelSet.

HTX_ERROR_UNKNOWN_BOARD The specified board could not be found. This return value is

also output if the softwar was not informed about the CAN

nodes present on the board with the HiCOCANOpen

function.

HTX_ERROR_UNKNOWN_NODE The software was unable to find the specified CAN node

(with the HiCOCANOpen function). The error does not occur

if CAN node 2 is to be accessed on a board where only one

CAN node is installed. With all other software functions this

return value means that the software (DLL) was not

informed about the CAN node via HiCOCANOpen function.

3.2 Numbering the CAN Nodes
It is possible to operate up to 4 HiCOCAN boards (not HiCOCAN-MiniPCI) in a system; the boards

must be given different board numbers.

The CAN node is selected via the node number (can) according to the following formula:

can = 2 * board number + number of the CAN controller - 1

"Number of the CAN controller" may have a value of 1 or 2, which results in the following values for

can:

HiCOCAN-SW (Rev17) 16/58

Number of CAN node Location of the CAN node

0 Module 0, CAN controller 1

1 Module 0, CAN controller 2

2 Module 1, CAN controller 1

3 Module 1, CAN controller 2

4 Module 2, CAN controller 1

5 Module 2, CAN controller 2

6 Module 3, CAN controller 1

7 Module 3, CAN controller 2

Table 1: Assigning the CAN node number to the CAN controllers on max. 4 boards

Note

The numbering of the CAN nodes depends on the number of the CAN nodes actually available on

the board.

The number of physically available CAN nodes, however, will not be checked!

HiCOCAN MiniPCI Boards

You can only operate 1 MiniPCI (2 or 4 channels) board at a time. So, in case of 2 channels the

nodes are numbered 0 and 1. In case of 4 channels: 0, 1, 2, 3.

3.3 Communication with HiCOCAN

3.3.1 Command to the Board

The board and the installed CAN nodes are controlled via entries in specific command cells of the

DPM. The firmware analyzes these cells as follows:

 First it is checked whether the command cell is still in use by a previous command.

 If the cell is free, the required data can be entered in the DPM.

 The information about the command to be executed by the board is entered in the

command cell.

 The firmware executes the command and then resets the command cell.

3.3.2 Determining the Status Information

The status information contained in the communication areas in the DPM is updated each time the

firmware is modified. It is thus sufficient to read out the corresponding state via the functions

provided.

HiCOCAN-SW (Rev17) 17/58

3.3.3 Message Transfer with the Windows Driver

Using the HiCOCANRead or the HiCOCANReadEx function, you are able to read the received

messages from the HiCOCAN module's DPM. You can write the messages to be transmitted to the

module's DPM with the HiCOCANWrite function.

All three functions have a timeout time. This timeout time takes effect when the receive queue is

empty or the transmit queue is full, respectively. In this case, the functions HiCOCANRead,

HiCOCANReadEx and HiCOCANWrite are waiting for a free entry in the transmit queue until the

timeout time has elapsed at the latest, before returning an error. This is done via driver-internal

events by means of which the corresponding functions are blocked until the event occurs or the

timeout time has elapsed. The use of those events prevents the functions from wasting runtime.

The events are set to the "Signalled state" via the interrupt service routine. The routine first

processes the following causes of an interrupt:

 The new message was entered in the DPM receive queue.

 The firmware has taken a message from the DPM transmit queue.

 At least one message could not be received by the CAN controller, because the receive

queue in the DPM and the CAN controller's receive buffer were overrun.

 CAN controller entered bus-off state.

 The firmware has detected an uncaught exception.

With the first two causes of an interrupt the respective event is set to the "Signalled state". As

explained above, the functions HiCOCANRead, HiCOCANReadEX and HiCOCANWrite continue to

process, reading the message from or writing it to the DPM.

With the other causes of an interrupt a driver-internal signalling flag is set. This flag causes the

functions with the "can" parameter to return HTX_BUSOFF, HTX_OVERRUN or HTX_CANERROR in

place of HTX_SUCCESS.

3.4 Interrupt Handling

3.4.1 Interrupt Handling in the Windows Driver

In the Windows versions of the driver the interrupt service routine performs all signalling tasks. The

application does not have to carry out an action. The following will only explain the driver-

internal process.

3.4.1.1 Receive Interupt

With the receive interrupt the event is set to "Signalled state". In this way, the HiCOCANRead or

HiCOCANReadEX function is signalled that a received message is in the DPM.

3.4.1.2 Transmit Interrupt

With the transmit interrupt the interrupt service routine also sets a driver-internal event to

"Signalled state". In this way, the HiCOCANWrite function is signalled that there is still space

available in the corresponding transmit queue of the DPM.

HiCOCAN-SW (Rev17) 18/58

3.4.1.3 Error Interrupts

As soon as an error interrupt occurs, the interrupt service routine sets a signalling event, which

causes functions with the can parameter to return a value other than HTX_SUCCESS. Other return

values can be: HTX_OVERRUN, HTX_BUSOFF or HTX_ERROR_SYSTEM.

3.5 Multitasking
The supplied driver is capable of multitasking, i.e., it is able to support more than one process at the

same time. As a rule, all driver functions are available to all processes. However, there are some

restrictions:

1. Each of the maximally 8 available CAN nodes may be used by one process only.

2. The HiCOCANReset function should not be used. This function resets all temporary

parameter settings and deletes both the receive- and transmit queue. This will cause

problems when the two CAN nodes of a board are used by several processes.

3. The HiCOCANSetTimestamp function should not be used, either. The timestamps of both

nodes of a board are set by the same timer.

If the two CAN nodes are used by several processes, and if the timestamps are analyzed

each, the following problem occurs:

When the HiCOCANSetTimestamp function is used, process 1 will increment the timestamp

by one day. However, process 2 continues to receive messages. As a result, this process

detects a one-day jump when evaluating the timestamp although only a few micro- or

milliseconds have elapsed between the receipt of the two messages.

4. The HiCOCANResetDriver function usually re-enables all resources used by the driver. This

is independent of the calling process, which means that a CAN node might not be accessed

any more without restarting the DLL

HiCOCAN-SW (Rev17) 19/58

3.6 General Functions

It is possible to have up to four boards in a system and they must differ in their board numbers (the

relevant jumpers are described in later chapters) and their resources. But note; only ONE HiCOCAN-

MiniPCI is supported due to the missing jumpers for the board number selection.

3.6.1 HiCOCANOpenDriver()

Before calling a driver's function for the first time, the driver has to be initialized. For this, call:

DWORD HiCOCANOpenDriver(void)

Return values:

HTX_SUCCESS

HTX_ERROR

Note

If this function yields HTX_ERROR, no further functions of the driver DLL may be invoked. Check

whether the driver was installed properly.

3.6.2 HiCOCANCloseDriver()

Before closing the application call:

DWORD HiCOCANCloseDriver(void)

in order to re-enable all resources used by the DLL.

Return value:

HTX_SUCCESS

HTX_ERROR_APPLICATION

HTX_ERROR_SYSTEM

Note

After using the HiCOCANCloseDriver function, the HiCOCANOpenDriver function needs to be

executed first, before you are able to use the driver's other functions!

Hint

Before calling this function, it is recommended that you halt all CAN nodes used by the calling

process (application) via the HiCOCANStop function.

If this function was not used while debugging an application, for example, use the

HiCOCANResetDriver function. This is necessary in order to free the resources used again.

HiCOCAN-SW (Rev17) 20/58

3.6.3 HiCOCANResetDriver()

The function

DWORD HiCOCANResetDriver(void)

resets the driver, enabling all resources such as memory locations and interrupts.

Return values:

HTX_SUCCESS

HTX_ERROR_DRIVER

HTX_ERROR_APPLICATION

Important note

The HiCOCANResetDriver function should only be used during the development if the application

was closed without successfully executing the HiCOCANCloseDriver function.

This function has an effect on all processes (applications) that make use of this driver! Therefore,

k_ic qspc wms f_tc _ jmmi _r qcargml ěKsjrgr_qigle¦ ufcl sqgle rfgq dslargmlĜ

After using the HiCOCANResetDriver function, the HiCOCANOpenDriver function must be

executed again!

3.6.4 HiCOCANGetErrorString()

Determines the symbolic name HTX_...... of the specified value:

DWORD HiCOCANGetErrorString (DWORD ErrorCode, TCHAR *Puffer)

Parameter Description
DWORD ErrorCode Error code for which the error text is to be determined.

TCHAR *Puffer Pointer to the beginning of a buffer with a size of 100 characters,
where the error code is to be entered.

Return values:

HTX_SUCCESS

HTX_ERROR

If the return value is HTX_ERROR, "UNKNOWN ERRORCODE" is returned as text in the array buffer.

This function is available for ANSI- and for Unicode. You may switch between the codes by defining

the UNICODE symbol before linking the HICOCAN.h header file.

HiCOCAN-SW (Rev17) 21/58

3.6.5 HiCOCANGetDriverInformation()

This function is used to query the version information. It has the following prototype:

DWORD HiCOCANGetDriverInformation(LPBYTE lpbVersionNumber,

 void* lpExtendedInformation);

Parameter Description
LPBYTE lpbVersionNum ber Pointer to a variable in which the version number of the driver is

to be entered.

void

*lpExtendedInformation
Pointer to a structure of type sHiCOCANDriverInfo.

Return values:

HTX_SUCCESS

HTX_ERROR_APPLICATION

HTX_ERROR

The function fills the specified variables with the corresponding information. The returned version

number is coded as follows: The upper four bits contain the major version, and the lower four bits

the minor version. This means that for driver version 4.5 the value 45h is returned.

With the lpExtendedInformation parameter the following has to be considered. The bStructVersion

element needs to be initialized by the application with a valid value (for valid values, see the

description of the sHiCOCANDriverInfo structure). If, after calling the function, this element is

bStructVersion 0, then all other data in this structure are invalid.

HiCOCAN-SW (Rev17) 22/58

3.7 Functions for Controlling the CAN Nodes

3.7.1 HiCOCANOpen()

This function is used to initialize the driver for a specific CAN node:

DWORD HiCOCANOpen(BYTE can);

Parameter Description
BYTE can Number of the CAN node for which the driver is to be opened.

Return values:

HTX_SUCCESS

HTX_ERROR_APPLICATION

HTX_ERROR_DRIVER

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_MULTIPLE_NODE

HTX_ERROR_CANNOT_SET_IRQ

HTX_ERROR_REGISTRY

HTX_ERROR_ALREADY_OPENED

HTX_ERROR_ALREADY_USED

HTX_ERROR_BOARD_NOT_RUNNING

HTX_ERROR_CHECKSUM_BOOTSTRAPPER

HTX_ERROR_CHECKSUM_FIRMWARE

HTX_ERROR

HTX_ERROR_NOCONFIG

HTX_ERROR_SYSTEM

Executing the HiCOCANopen function informs the driver about the specified CAN node and

performs the necessary initializations. After that, the CAN node may be accessed by all other

functions.

3.7.2 HiCOCANClose()

The following function enables a CAN node which can then be used by another application:

DWORD HiCOCANClose (BYTE can)

Parameter Description

BYTE can Number of the CAN node for which the driver is to be opened.

HiCOCAN-SW (Rev17) 23/58

Return values:

HTX_SUCCESS

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_SYSTEM

Note

 After using the HiCOCANCloseDriver function, the HiCOCANOpenDriver function needs to be

executed first, before you are able to use the driver's other functions!

 In the Windows version HiCOCANClose is also called by the HiCOCANCloseDriver() function.

3.7.3 HiCOCANStart()

If HiCOCAN is at STOP state it can instantly re-enter RUN state with this option only:

DWORD HiCOCANStart (BYTE can)

Parameter Description

BYTE can Number of the CAN node for which the driver is to be opened.

Return values:

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_SYSTEM

This function instructs HiCOCAN to activate the specified CAN controller, in order to establish the

CAN message transfer. Available CAN messages in the DPM's message queues will be kept. In

operating modes other than STOP the HiCOCANStart function has no effect.

HiCOCAN-SW (Rev17) 24/58

3.7.4 HiCOCANStop()

The opposite function of HiCOCANStart is this function:

DWORD HiCOCANStop (BYTE can)

Parameter Description

BYTE can Number of the CAN node for which the driver is to be opened.

Return values:

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_SYSTEM

HiCOCANStop instructs the HiCOCAN firmware to set the specified CAN node to the reset mode, in

order to stop the message transfer. Available CAN messages in the message queue of the DPM are

deleted. In operating modes other than RUN HiCOCANStop has no effect.

3.7.5 HiCOCANReset()

The following function serves to restart the firmware on a HiCOCAN board:

DWORD HiCOCANReset (BYTE boardnr)

Parameter Description

BYTE boardnr Entry specifying the HiCOCAN board by using one of the following

definitions of the supplied HiCOCAN.H header file:

#define HiCOCAN0 0

#define HiCOCAN1 2

#define HiCOCAN2 4

#define HiCOCAN3 6

HiCOCAN-SW (Rev17) 25/58

Return values:

HTX_SUCCESS

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_BOARD

HTX_ERROR_BOARD_NOT_RUNNING

HTX_ERROR_CHECKSUM_BOOTSTRAPPER

HTX_ERROR_CHECKSUM_FIRMWARE

HTX_ERROR_SYSTEM

Hint

Restarting the firmware will initialize HiCOCAN anew. As a consequence, possibly existing CAN

messages will get lost.

When using this function, have a look at the "Multitasking" section!

3.7.6 HiCOCANResetContr()

The following function can be used to reset specific CAN nodes:

DWORD HiCOCANResetContr(BYTE can, bool newInit)

Parameter Description

BYTE can Number of the CAN node for which the driver is to be opened.

bool newInit If TRUE, the specified CAN node is initialized again with the
configuration data from the flash.

Return values:

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_SYSTEM

HiCOCAN-SW (Rev17) 26/58

If the CAN node is not initialized again, it is restarted in any case. If the CAN node is initialized again,

it will be started only if the corresponding configuration parameter StartMode is unequal to null.

This information is obtained from the relevant configuration data contained in the flash.

Note

Not supported by HiCOCAN-MiniPCI!

3.7.7 HiCOCANClrOverrun()

The Overrun bit indicates that at least one message could not be received (and got lost) due to a

full receive queue. The Overrun bit of a specific CAN node is reset with this function:

DWORD HiCOCANClrOverrun(BYTE can)

Parameter Description

BYTE can Number of the CAN node for which the driver is to be opened.

Return values:

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_SYSTEM

HiCOCAN-SW (Rev17) 27/58

3.7.8 HiCOCANAbortTransmit()

Using the following function, a message that is currently being transferred by the CAN controller

can be aborted:

DWORD HiCOCANAbortTransmit(BYTE can)

Parameter Description

BYTE can Number of the CAN node for which the driver is to be opened.

Return values:

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_SYSTEM

Note

Not supported by HiCOCAN-MiniPCI!

3.7.9 HiCOCANRegisterEvent()

Using the HiCOCANRegisterEvent function, a Win32 event can be registered, which is set when the

specified level of the receive queue is reached or exceeded.

The function has this prototype:

DWORD HiCOCANRegisterEvent(BYTE ca n, HANDLE *lphEvent,

 DWORD dwTriggerLevelSet,

 DWORD dwTriggerLevelReset);

HiCOCAN-SW (Rev17) 28/58

Parameter Description

BYTE can Number of the CAN node for which the driver is to be opened.

HANDLE *lphEvent Pointer to the handle of the Win32 event

dwTriggerLevelSet Trigger level at which the Win32 event is set

dwTriggerLevelReset Trigger level at which the Win32 event is reset

Return values:

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_SYSTEM

HTX_ERROR_TRIGGERLEVELSET_INVALID

HTX_ERROR_TRIGGERLEVELRESET_INVALID

The application creates a Win32 event and passes the pointer to the handle of this function. The

driver sets the specified event by means of the OS function SetEvent if the level of the receive

queue reaches and/or exceeds the specified trigger level dwTriggerLevelSet (number of messages

in the receive queue >= dwTriggerLevelSet). The driver resets the specified event when the

specified trigger level dwTriggerLevelReset is not reached (number of messages in the receive

queue < dwTriggerLevelReset).

Passing the value NULL in the lphEvent parameter to the HiCOCANRegisterEvent function will

again deactivate this functionality.

Note

The driver expects the event to be passed to be valid. This means that the calling application

cancels the event for the driver and then returns the handle to the operating system via

CloseEvent.

HiCOCAN-SW (Rev17) 29/58

Example using the function HiCOCANRegisterEvent :

This example demonstrates the use of the function HiCOCANRegisterEvent for can node 0. In this

example, the application wants the event to be set when 20 or more messages in the receive

queue of the can node 0.

The application also tells the driver that the event is to be reset when the application has read the

messages and there are less than five messages in the receive queue of can node 0.

HANDLE hEvent;

DWORD dwRetVal = HTX_SUCESS;

// Create Win32 event. IMPORTANT : You MUST create a manual reset event,

// which is not signaled !!!

hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

if (hEvent == NULL)

{

 / / ERROR : You MUST NOT call HiCOCANRegisterEvent, because the

 // event is not valid !

 // error handling

 return;

}

dwRetVal = HiCOCANRegisterEvent(0, &hEvent, 20, 5);

if ((dwRetVal != HTX_SUCCESS) &&

 (dwRetVal != H TX_OVERRUN) &&

 (dwRetVal != HTX_BUSOFF) &&

 (dwRetVal != HTX_CANERROR))

{

 // ERROR : The event will NOT handled by the HiCOCAN driver. Check

 // the error code for detail information.

 // error handling

 return;

}

// IMPORTANT : You MUST NOT cl ose the event handle before you have the

// event deregistered by the driver (see below)

// begin a loop

while (fEndApplication == FALSE)

{

// Wait until the event is signaled

 dwRetVal = WaitForSingleObject(hEvent, INFINITE);

 if (dwRetVal == WAIT_O BJECT_0)

 {

 // event signal - > do something e.g. read telegrams by calling

 // HiCOCANRead or HiCOCANReadEx

 }

 else

 {

 // error handling

 }

}

HiCOCAN-SW (Rev17) 30/58

// We want that the application should exit - > deregister event

dwRetVal = HiCOCANRegisterEven t(0, NULL, 0, 0);

if ((dwRetVal != HTX_SUCCESS) &&

 (dwRetVal != HTX_OVERRUN) &&

 (dwRetVal != HTX_BUSOFF) &&

 (dwRetVal != HTX_CANERROR))

{

// ERROR : The event will NOT handled by the HiCOCAN driver.

 // Check the error code for detail inform ation.

 // error handling

 return;

}

// This is the earliest - possible moment to close the event handle !!!.

CloseHandle(hEvent);

3.7.10 HiCOCANCanCtrl()

This function is only supported by the PCI based boards (HiCOCAN-PCI and HiCOCAN-MiniPCI). This

function allows setting the board into a specific operation mode depending on the command

value.

DWORD HiCOCANCanCtrl (BYTE can, BYTE cmd)

Parameter Description

BYTE can Number of the CAN node for which the driver is to be opened.

HANDLE *lphEvent Pointer to the handle of the Win32 event

dwTriggerLevelSet Trigger level at which the Win32 event is set

dwTriggerLevelReset Trigger level at which the Win32 event is reset

Supported command Description

HiCOCAN_SET_PASSIV Setting the can node to passive mode.

HiCOCAN_EN_AUTO_OVERR Clearing overrun is done by the firmware

HiCOCAN_DIS_AUTO_OVERR Clearing overrun must be done by the application

Return values:

HiCOCAN-SW (Rev17) 31/58

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_SYSTEM

HiCOCAN-SW (Rev17) 32/58

3.8 Timestamp

HiCOCAN's firmware provides each message with a timestamp indicating the time (with 10-µs

resolution) when the message was received. The timer installed on the board starts with power-on

or every time the board is reset at 0 days, 00:00:00.000.000 hours.

3.8.1 HiCOCANSetTimestamp()

This function enables the application to set a timestamp at a specific time: The

HiCOCANSetTimestamp function has been implemented to enable the application to place

timestamps at a particular time. It provides the firmware with the specified timestamp information.

The firmware will then accordingly set the timer on the HiCOCAN module.

DWORD HiCOCANSetTimestamp(BYTE board, psTS timestamp)

Parameter Description

BYTE board Entry specifying the HiCOCAN board by using one of the following

definitions of the supplied HiCOCAN.H header file:

#define HiCOCAN0 0

#define HiCOCAN1 2

#define HiCOCAN2 4

#define HiCOCAN3 6

psTS timestamp Pointer to a variable of the type sTS containing the relevant time

information. The sTS data type is defined in the supplied C-header

dgjc FgAMA?L,f9 qcc af_nrcp ¦B_r_ Qrpsarspcq´,

Return values:

HTX_SUCCESS

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_BOARD

HTX_ERROR_SYSTEM

Notes:

1.) With HiCOCAN-MiniPCI it is only possible to reset the timestamp counter to zero!

2.) K_ic qspc wms f_tc _ jmmi _r qcargml ěKsjrgr_qigle¦ ufcl sqgle rfgq dslargmlĜ

HiCOCAN-SW (Rev17) 33/58

3.9 Read/Write Functions

3.9.1 HiCOCANWrite()

HiCOCANWrite instructs the driver layer to write a CAN message to the transmit queue of the

corresponding CAN node. The data for the structure of the CAN message must be reported in form

of a pointer to a structure of the type sPCCanMsg. This type is defined in the supplied HiCOCAN.h

C-header file; see chapter "Data Structures".

DWORD HiCOCANWrite(BYTE Can, psPCCanMsg msg, DWORD Timeout)

Parameter Description

BYTE can Number of the CAN node which is used to transmit the message.

psPCCanMsg msg Pointer to the message data

DWORD Timeout Specifies the time HiCOCANWrite is waiting for a free entry in the

transmit queue when the transmit queue is full.

The parameter is entered in 100ns units. The value 0 specifies an

infinite waiting period.

Return values:

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_FULL_QUEUE

HTX_ERROR_ILLEGAL_ID

HTX_ERROR_ILLEGAL_LENGTH

HTX_ERROR_SYSTEM

HiCOCANWrite first checks whether there is sufficient space in the transmit queue of the desired

CAN node. If sufficient space is available, the CAN message is created from the specified message

data and written to the transmit queue. If the space is unavailable, the HTX_ERROR_FULL_QUEUE

error code is immediately returned with the DOS version. With the Windows version the

application is waiting until the timeout time has elapsed. If there is no free entry in the transmit

queue until the timeout time has elpased, the Windows version will also return the

HTX_ERROR_FULL_QUEUE error code.

HiCOCAN-SW (Rev17) 34/58

Hint

The timestamp data are taken into consideration.

3.9.2 HiCOCANRead()

Using the driver's HiCOCANRead function, a CAN message can be read from the receive queue of a

specific CAN node. HiCOCANRead enters the message data in a structure of the type sPCCanMsg. A

corresponding structure needs to be provided by the application (allocated memory), and

HiCOCANRead must have a pointer to this structure. The sPCCanMsg type is defined in the

supplied HiCOCAN.h C-header file; see section "Data Structures".

DWORD HiCOCANRead(BYTE can, psPCCanMsg msg, DWORD Timeout)

Parameter Description

BYTE can Number of the CAN node which received the message.

psPCCanMsg msg Pointer to the message data

DWORD Timeout Specifies the time HiCOCANRead is waiting for the entry of new

messages when the receive queue is empty.

The parameter is entered in 100ns units. The value 0 specifies an

infinite waiting period.

Return values:

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_EMPTY_QUEUE

HTX_ERROR_SYSTEM

HiCOCANRead first checks whether there is a message available in the receive queue of the desired

CAN node. If this is the case, the message is transferred to the structure provided by the application

to which the msg pointer points. The supplied timestamp specifies the time that the CAN controller

received this message. For more detailed information, please refer to section

"HiCOCANSetTimestamp()".

If no message is available in the corresponding receive queue in the DOS driver,

HTX_ERROR_EMPTY_QUEUE is returned.

HiCOCAN-SW (Rev17) 35/58

The Windows version of the driver waits until the timeout time has elapsed. If no message is

received during the timeout time, the error code HTX_ERROR_EMPTY_QUEUE is returned;

otherwise the received message is returned.

3.9.3 HiCOCANReadEx()

Using the driver's HiCOCANReadEx function, a list of CAN message can be read from the receive

queue of a specific CAN node. HiCOCANReadEx enters the list of message data in a structure of the

type sPCCanMsg. A corresponding structure needs to be provided by the application (allocated

memory), and HiCOCANReadEx must have a pointer to this structure. The sPCCanMsg type is

defined in the supplied HiCOCAN.h C-header file; see chapter "Data Structures" on p. Fehler!

Textmarke nicht definiert.. ListSize is a pointer to the size of the list. When the function returns, it

contains the actual number of CAN telegrams read.

DWORD HiCOCANReadEx(BYTE can, psPCCanMsg MsgList, DWORD Timeout,

 DWORD *ListSize)

Parameter Description

BYTE can Number of the desired CAN node.

psPCCanMsg MsgList Pointer to the message data

DWORD Timeout Specifies the time HiCOCANReadEx is waiting for the entry of new

messages when the receive queue is empty.

The parameter is entered in 100ns units. The value 0 specifies an

infinite waiting period.

DWORD ListSize Size of the list, provided by the application. When

HiCOCANReadEx return this variable contains the number of

entries returned.

Return values:

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_EMPTY_QUEUE

HTX_ERROR_SYSTEM

HiCOCANReadEx first checks whether there are messages available in the receive queue of the

desired CAN node. If this is the case, the messages are transferred to the list by the application to

which the MsgList pointer points. The supplied timestamp specifies the time that the CAN

HiCOCAN-SW (Rev17) 36/58

controller received this message. For more detailed information, please refer to section

"HiCOCANSetTimestamp()".

The Windows version of the driver waits until the timeout time has elapsed. If no message is

received during the timeout time, the error code HTX_ERROR_EMPTY_QUEUE is returned;

otherwise the received message is returned.

HiCOCAN-SW (Rev17) 37/58

3.10 Status Request

3.10.1 HiCOCANState()

The state of a HiCOCAN board can be requested with this function:

DWORD HiCOCANState(BYTE board, BYTE* State)

Parameter Description

BYTE board Entry specifying the HiCOCAN board by using one of the following

definitions of the supplied HiCOCAN.H header file:

#define HiCOCAN0 0

#define HiCOCAN1 2

#define HiCOCAN2 4

#define HiCOCAN3 6

BYTE *State Pointer to a variable of type BYTE defined by the calling function.

The state of desired board is written to the specified variable.

Table 2 displays the significance of the returned value. Please note

rf_r rfc FgAMA?L `m_pbq gq _r rfc ¦pc_bw´ qr_rc mljw* gd _jj qr_rsq

bits are 0 except for status bit 6.

Return values:

HTX_SUCCESS

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_BOARD

HTX_ERROR_SYSTEM

Hint

The returned state is valid only if the function returns HTX_SUCCESS.

HiCOCAN-SW (Rev17) 38/58

Bit pos. Function Bit Value Significance

7 ERROR 1 = yes General error

6 RUN 1 = yes Firmware running

5 SYS_FAIL 1 = yes Hardware error

4 FW_CHK 1 = yes Firmware error (checksum)

3 BOOTCHK 1 = yes Bootstrapper error (checksum)

2 --- Reserved

1 CFGCHK 1 = yes No configuration data available for the CAN

nodes

0 --- Reserved

Table 2: Significance of the returned value

HiCOCAN-SW (Rev17) 39/58

3.10.2 HiCOCANStateTrans()

The state of the fault tolerant error line of the HiCOCAN board can be requested with this function:

DWORD HiCOCANState(BYTE board, BYTE* State)

Parameter Description

BYTE board Entry specifying the HiCOCAN board by using one of the following

definitions of the supplied HiCOCAN.H header file:

#define HiCOCAN0 0

#define HiCOCAN1 2

#define HiCOCAN2 4

#define HiCOCAN3 6

BYTE *State Pointer to a variable of type BYTE defined by the calling function.

The state of the fault tolerant transceiver is written to the specified

variable. If bit 0 is set to 0, everything is ok and if bit 0 is 1 a fault

tolerant occurred.

Return values:

HTX_SUCCESS

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_BOARD

HTX_ERROR_SYSTEM

Hint

The returned state is valid only if the function returns HTX_SUCCESS.

HiCOCAN-SW (Rev17) 40/58

3.10.3 HiCOCANStateContr()

The HiCOCANState function provides information on the state of the CAN controller:

DWORD HiCOCANStateContr(BYTE can, BYTE* State, BYTE* NumOfRecErrors,

 BYTE* NumOfTraErrors)

Parameter Description

BYTE can Number of the desired CAN node.

BYTE *State Pointer to a variable of type BYTE defined by the calling function.

The state of the desired CAN controller is written to the specified

variable. Table 3 displays the significance of the returned value.

BYTE *NumOfRecErrors Pointer to a variable of type BYTE defined by the calling function.

The number of the receive errors is written to the specified

variable.

BYTE *NumOfTraErrors Pointer to a variable of type BYTE defined by the calling function.

The number of the transmit errors is written to the specified

variable.

Return values:

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_SYSTEM

Hint

The returned state and the numbers of errors are valid only if the function returns HTX_SUCCESS.

HiCOCAN-SW (Rev17) 41/58

Bit pos. Function Bit Value Significance

7 Bus-Off 1 = yes CAN controller is in the Bus off state

6 Error Passive 1 = yes CAN controller is in the Error-Passive state

5 Controller transmits a

message

1 = yes

4 Controller receives a

message

1 = yes

3 Last request for

transmit message

successfully

terminated

1 = yes

2 Transmit buffer

available

1 = yes

1 Overrun CANRxFifo 1 = yes CAN controller has set the Overrun bit, i.e., at

least one message could not be received due to

a full receive queue

0 Messages are

available

1 = yes A message is available in the receive buffer of

the controller

Table 3: Significance of the returned value

Note

If the status bits 4 and 5 are simultaneously set, the controller is in the Stop state.

For a more detailed description of the significance, please refer to the CAN controller's data sheet

[12] or the Application Note [13].

3.10.4 HiCOCANTraQState(), HiCOCANRecQState()

Using the functions

DWORD HiCOCANTraQState(BYTE can)

DWORD HiCOCANRecQState(BYTE can)

the state of the transmit or receive queue of each CAN node can be examined. If no error occurred,

the number of entries is returned.

Parameter Description

BYTE can Number of the desired CAN node.

HiCOCAN-SW (Rev17) 42/58

Return values:

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_SYSTEM

HTX_TRANSMITQUEUE_FULL (only for function HiCOCANTraQState)

HTX_RECEIVEQUEUE_EMPTY (only for the function HiCOCANRecQState)

Number of the messages entered

HiCOCAN-SW (Rev17) 43/58

3.11 Modifying the Communication Parameters

The functions described in this chapter allow you to temporarily alter communications parameters

such as the baud rate or acceptance filter.

3.11.1 HiCOCANSetAcceptMask()

The CAN controller allows for filtering the messages by means of the hardware. For this purpose,

several registers are provided whose functions are described in the data sheet [12] or the

corresponding Application Note [13], respectively.

The acceptance mask is set with this function:

DWORD HiCOCANSetAcceptMask(BYTE can, BYTE FilterMode,

 DWORD Code,DWORD MaskReg)

Parameter Description

BYTE can Number of the desired CAN node.

BYTE FilterMode Value of the acceptance filter mode;

As for the significance of this value, please refer to the data sheet

[12] or the Application Note [13]. The constants

HiCOCAN_FILTERMODE_DUAL and

HiCOCAN_FILTERMODE_SINGLE defined in the HiCOCAN.h header

file can be used to set this value.

DWORD Code Value of the acceptance code register;

The most significant byte with the register ACR3 and the least

significant byte with register ACR0 correspond with each other. As

for the significance of this value, please refer to the data sheet [12]

or the Application Note [13].

DWORD MaskReg Value of the acceptance register;

The most significant byte with the register ACR3 and the least

significant byte with register ACR0 correspond with each other. As

for the significance of this value, please refer to the data sheet [12]

or the Application Note [13].

Return values:

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_SYSTEM

HiCOCAN-SW (Rev17) 44/58

Note

Not supported by HiCOCAN-MiniPCI!

3.11.2 HiCOCANSetTimingReg(), HiCOCANSetTimingRegEx(), HiCOCANSetBaud()

The baud rate at which the CAN node operates is determined by the two 8-bit-wide bus timing

registers BTR0 and BTR1. As for the significance of the contained bits, please refer to the data sheet

[12] or the Application Note [13] of the CAN controller used. Note that the CAN controllers are

operated with 20 MHz.

Two functions are provided for setting these registers and thus the baud rate. The first function

writes the specified values for the Bus timing registers of the specified CAN node directly to these

registers:

DWORD HiCOCANSetTimingreg(BYTE can, BYTE reg0, BYTE reg1)

Parameter Description

BYTE can Number of the desired CAN node.

BYTE reg0 Value for timing register 0

BYTE reg1 Value for timing register 1

Return values:

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_SYSTEM

This function is not supported by HiCOCAN-MiniPCI. Please use the function:

DWORD HiCOCANSetTimingregEx(BYTE can, DWORD btr)

HiCOCAN-SW (Rev17) 45/58

Parameter Description

BYTE can Number of the desired CAN node.

DWORD btr Value for timing register

Return values:

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_SYSTEM

The second function:

DWORD HiCOCANSetBaud(BYTE can, BYTE rate)

takes the values for the bus timing register from the Board's flash device. These values are stored

by means of the configuration tool. The parameters to be specified are the following:

Parameter Description

BYTE can Number of the desired CAN node.

BYTE rate Entry specifying the desired baud rate by using the following

definitions (defined in the HiCOCAN.h header file):

#define HiCOCAN_BAUD10K 1

#define HiCOCAN_BAUD20K 2

#define HiCOCAN_BAUD50K 5

#define HiCOCAN_BAUD100K 10

#define HiCOCAN_BAUD125K 12

#define HiCOCAN_BAUD250K 25

#define HiCOCAN_BAUD500K 50

#define HiCOCAN_BAUD1M 100

Return values:

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HiCOCAN-SW (Rev17) 46/58

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_SYSTEM

Important note

A message that might be transmitted while the baud rate is being changed will get lost with both

functions!

3.11.3 HiCOCANParameter()

The HiCOCANParameter function allows you to determine the communications parameters

currently set in the CAN controller:

DWORD HiCOCANParameter(BYTE can, BYTE *TimingReg0, BYTE *TimingReg1,

 WORD *Baudrate, BYTE *FilterMode, DWORD *Code,

 DWORD *MaskReg)

Parameter Description

BYTE can Number of the desired CAN node.

BYTE* TimingReg0,

BYTE* TimingReg1

Pointer to two variables to which the values of the bus timing

registers 0 and 1 are copied.

WORD* Baudrate Pointer to a variable which is provided with a value (in kBaud) for

the baud rate.

BYTE* FilterMode,

DWORD *Code,

DWORD *MaskReg

Pointer to variables where the values for acceptance filter mode,

the acceptance code register and the acceptance mask register

are to be entered.

Return values:

HTX_SUCCESS

HTX_OVERRUN

HTX_BUSOFF

HTX_CANERROR

HTX_ERROR_APPLICATION

HTX_ERROR_UNKNOWN_NODE

HTX_ERROR_NOT_SUPPORTED

HTX_ERROR_SYSTEM

HiCOCAN-SW (Rev17) 47/58

Hint

The parameters' returned values are valid only if the function returns HTX_SUCCESS.

Note

Not supported by HiCOCAN-MiniPCI!

HiCOCAN-SW (Rev17) 48/58

4 Configuration Tool under Windows
The configuration tool serves to permanently configure the board. It is assumed that the driver for

the boards has been installed prior to starting up the system.

When starting the configuration tool, the following dialog box appears:

Important:

On Windows x64 the 64-bit edition of the configuration tool is installed. The 64-bit edition must

use the 64-`gr tcpqgml md rfc bpgtcp BJJ, Qcc qcargml ¦Amldgesp_rgml Rmmj _lb A?L Kmlgrmp ml

Uglbmuq v42´ dmp kmpc gldmpk_rgml,

HiCOCAN-SW (Rev17) 49/58

4.1 The Menus and Buttons

4.1.1 File Menu

The "Select driver" menu item selects the driver for the board. The DLL name depends on the board

type and if the OS is a 32-bit or 64-bit OS:

Board type 32-bit OS 64-bit OS

HiCOCAN-ISA /

 HiCOCAN-104

HiCOCAN3.DLL ---

HiCOCAN-PCI /

HiCOCAN-CPCI

HiCanPci.DLL HiCanPci_x64.DLL

HiCOCAN-MiniPci

(-2CH/-4CH)

HiCanMiniPci.DLL HiCanMiniPci_x64.DLL

HiCOCAN-PCI104 HiCanPci104.DLL HiCanPci104_x64.DLL

 The driver DLLs can be found in the System or System32 folder of your operating system.

The "load configuration data" menu item loads configuration data from a file into the input mask.

As for the format of the file to be read, please refer rm rfc qcargml ¦Dmpk_r md rfc amldgesp_rgml

Dgjcq´.

The "save configuration data" menu item saves the configuration data currently displayed in the

input mask to a configuration file.

HiCOCAN-SW (Rev17) 50/58

4.1.2 Boards Menu

Via the "Select Board" menu item you can select the board to be accessed with the other functions

of this menu. The currently selected board is indicated by a check mark to the left of its name.

Remark

If the HiCOCAN-KglgNAG bpgtcp BJJ gq sqcb _jj grckq gl rfc ¦Qcjcar @m_pb´ kcls _pc bgq_`jcb _lb rfc

board number is fixed to zero. This is done due to fact that only one HiCOCAN-MiniPCI board can

be in the system.

The menu item "Read configuration data from board" reads the configuration data currently saved

in the flash memory of the selected board and displays them in the input mask.

Hint

When selecting the "Read configuration data from board" menu item, the configuration data

previously entered in the input mask will be deleted!

The menu item "Transmit configuration data to board" transmits the data displayed in the input

mask to the selected board. The firmware saves the configuration data in the board's flash memory.

Any previously saved data will get lost.

The "Get information about the board" menu item displays information on the currently selected

board. (Here, information on the HiCOCAN-104 board is displayed.)

HiCOCAN-SW (Rev17) 51/58

Label Meaning

Selected board number Adjusted/assigned board number

Board type *) The following types are possible:

 PC104 card with two CAN controllers
 PC104 card with one CAN controller
 Standard PC card with two CAN controllers
 Standard PC card with one CAN controller
 HiCOCAN-104 second generation

Serial number *) Serial number of the card entered in the Plug and Play controller

Base address *) The assigned base address in main memory

Memory size *) Size of the address space used by the board

Used interrupt *) The interrupt allocated to the board

Used I/O-address *) The I/O address allocated to the board

Firmware Version number and date of revision of the firmware

Firmware state Status messages of the firmware in plain text

Configuration state Lsk`cp md asppclrjw amldgespcb a_l lmbc%q ml rfc `m_pb

*) This information is displayed for PC/104- and ISA boards only.

Using the "Allocate Resources manually" menu item, you are able to selectively allocate resources

to the HiCOCAN boards (address of the DPM, I/O address and interrupt). This can also be done

when no resources were allocated by the Plug and Play mechanism of the BIOS or operating

system. This menu item can be used in order to enter the resources for HiCOCAN-104-2H,

HiCOCAN-104-2L of the HiCOCAN board into the registry.

This menu item is of no significance with the HiCOCAN-PCI/HiCOCAN-CPCI boards.

The "Reset the specified board" menu item resets the desired board; that is, the board's firmware is

started anew, as is the case when switching on the computer.

Using the "Load Firmware" menu item, the firmware of the board may be exchanged.

For HiCOCAN-104/PCI/CPCI S-Records are used and for HiCOCAN-MiniPCI a binary format of the

firmware is used.

HiCOCAN-SW (Rev17) 52/58

Note

If the selected board is not available in the system when selecting the menu items "Read

configuration data from board", "Transmit configuration data to board", "Get information about the

board" or "Reset the specified board", one of the following error message displays:

 or

If the error message appears although the board was installed and has a correctly assigned board

number, this may be due to the following:

 - No resources (address for the DPM, I/O address and interrupt) were allocated to the board

through the Plug and Play mechanism.

- The resources (address for the DPM, I/O address and interrupt) for a non-Plug and Play card

have not been written to the registry

4.1.3 Help Menu

The "Help" menu item will call the configuration tool's online help system. Since the online help is

an HTML file, you will need a browser to view the file.

The "About..." menu item provides information on the configuration tool's version number.

HiCOCAN-SW (Rev17) 53/58

4.1.4 The Symbol Bar

The symbol bar provides various menu commands for fast access:

 Load configuration data:

 Save configuration data:

 Read configuration data from board:

 Transmit configuration data to board:

 Get information about the board:

4.2 Format of the Configuration Files
The structure of a configuration file corresponds to that of a Windows .INI file. This allows you to

create a configuration file with the configuration tool or by means of any editor.

The configuration file consists of the following three sections: HiCOCAN, CAN-NODE1 and

CAN-NODE2, which are described below.

4.2.1 The HiCOCAN Section

The HiCOCAN section contains the parameters which are valid for the entire board. The

recordname entry is the name of the data set. The second entry numChann specifies the number

of the configured CAN nodes.

4.2.2 The Sections CAN-NODE1 and CAN-NODE2

The sections CAN-NODE1 and CAN-NODE2 contain the parameters which apply to the nodes

1 and 2. These sections are not supported for HiCOCAN-MiniPCI. It is up to the application to

program the correct settings for the system. These parameters are determined by the following

entries:

Entry Meaning

StartMode If the parameter is 0, the CAN node has to be started by the application using the

HiCOCANStart function.

If it is unequal 0, the CAN node starts automatically after power on

btr0 Specifies the value of the bus timing register 0, which is written to the SJA1000

controller during initialization. The value to be specified is a two-digit hex

number. For mor details, please refer to the data sheet [12] or the Application

Note [13] of the CAN controller.

btr1 Specifies the value of the bus timing register 1, which is written to the SJA1000

controller during initialization. The value to be specified is a two-digit hex

number. For more details, please refer to the data sheet [12] or the Application

Note [13] of the CAN controller.

afm Specifies the value of the acceptance filter mode register, which is written to the

SJA1000 controller during initialization. The value to be specified is a two-digit

hex number. For more details, please refer to the data sheet [12] or the

Application Note [13] of the CAN controller

HiCOCAN-SW (Rev17) 54/58

Entry Meaning

acr Specifies the value of the acceptance code register, which is written to the

SJA1000 controller during initialization. The value to be specified is an eight-digit

hex number. For more details, please refer to the data sheet [12] or the

Application Note [13] of the CAN controller.

amr Specifies the value of the acceptance mask register, which is written to the

SJA1000 controller during initialization. The value to be specified is an eight-digit

hex number. For more details, please refer to the data sheet [12] or the

Application Note [13] of the CAN controller.

btr_10k,
btr_20k,
btr_50k,
btr_100k,
btr_125k,
btr_250k,
btr_500k,
btr_1M

These parameters serve to specify the values for the baud rate for the bus timing

registers 0 and 1. The values are written to the CAN controller's registers with the

HiCOCANSetBaud function. The value to be specified is a four-digit hex number,

where the first two digits represent the value for bus timing register 0 and the

last two digits the value for bus timing register 1.

HiCOCAN-SW (Rev17) 55/58

5 Sample Application
In order to show you how to use the application interface, the software package includes two

sample applications. The sample application hicocandemo.exe is for boards with two CAN nodes,

the sample application hicocandemo_4ch.exe is for HiCOCAN-MiniPci-4ch. These applications

transmit CAN messages between the two resp. four CAN nodes of a board, which are connected via

a cable for this purpose.

These applications are build in a Visual Studio 2008 environment.

Remark for Windows CE:

The application a_llmr `c amkngjcb ugrfgl rfc nj_rdmpk `sgjbcp cltgpmlkclr, Gr%q _ qcn_p_rc

VS2008 based C++ application which includes statically the MFC libraries. Before compiling, it is

necessary to install the SDK for the used kernel.

5.1 Detailed Description
After starting the application, the required settings are taken for using the two CAN nodes:

1. Open the driver

2. Open the nodes

3. Start the nodes

After this, three working threads will be created. Two of these threads each serve one CAN node.

The message will then be sent between these CAN nodes in a "ping-pong" manner.

For this, the first thread ("PingThread") initiates the transfer by creating a message and sending it

via the first node.

The second thread ("PongThread") receives this message via the second CAN node, modifies the

identifier and retransmits the message via the second CAN node.

The PingThread receives the message from the first node, and updates the output items of the

dialog.

The PingThread retransmits the message via the first CAN node to the PongThread, which is

already waiting for an incoming message.

HiCOCAN-SW (Rev17) 56/58

The third Thread cyclically polls the status of the two nodes and displays the information obtained

in the application window.

The program will be executed until the user closes the window. A set flag causes the threads to

close themselves. In addition, the driver is closed and the program left.

Remark

The sample application hicocandemo_4ch is the same for a board HiCOCAN-MiniPCI-4CH and

contains two additional threads for the additional CAN nodes.

HiCOCAN-SW (Rev17) 57/58

6 Troubleshooting (HiCOCAN-xxx)

6.1 Support

This product has been thoroughly tested over the development period. Due to its complexity,

however, no guarantee can be given that the boards operate seamlessly under any circumstances.

We are therefore grateful for any feedback regarding an improper operation of the boards.

If any problems occur, have a look at the FAQ section of this manual first. Or visit our website at

http://www.support.emtrion.com for the latest FAQ.

If you cannot find the necessary information, contact our Support Team via e-mail, fax or phone.

Your support question will be answered as soon as possible.

To accelerate the process, please fill out the supplied form, which can be found in the Support

directory of the CD or on the internet at http://www.emtrion.com/support_form_en.php.

Please fill in the form and send, fax or email it to:

Emtrion GmbH

 Alter Schlachthof 45

D-76131 Karlsruhe

Tel: 0721 / 62725 ¬ 0

 Fax: 0721 / 62725 ¬ 19

 Email : support@emtrion.de

http://www.support.emtrion.com/
http://www.emtrion.com/support_form_en.php
mailto:support@emtrion.de

HiCOCAN-SW (Rev17) 58/58

7 Reference
[1] PC/104 Specification

Version 2.3, June 1996

http://www.controlled.com/pc104/techp1.html

[3] Am29F400B, CMOS 5.0V only, sector erase Flash Memory

AMD

[4] CY7C132, 2Kx8 Dual-Port Static RAM

Cypress Semiconductor Corporation

 [10] Plug-and-Play BIOS Specification

Version 10.A, May 5, 1994

Compac Computer Corporation, Phoenix Technologies Ltd., Intel Corporation

[11] Extended System Configuration Data Specification

Version 1.0A, May 31, 1994

Compac Computer Corporation, Phoenix Technologies Ltd., Intel Corporation

[12] SJA1000 Stand-alone CAN controller

Data Sheet

Preliminary specification, 1997 Nov 04

Philips Semiconductors

[13] Application Note SJA1000 Stand-alone CAN controller

AN97076

Authors : Hank, Peter and Jöhnk Egon

1997 Dec 15

Philips Semiconductors

http://www.controlled.com/pc104/techp1.html

