
D
O

C
U

M
EN

TA
TI

O
N

emSBC-Argon Debian Manual

Debian Based BSP Manual

Last Change: July 9, 2021

Author: Jan von Wiarda

Rev. 1 / 11.05.2021

© Copyright 2021 emtrion GmbH

All rights reserved. This documentation may not be photocopied or recorded on any electronic media without written

approval. The information contained in this documentation is subject to change without prior notice. We assume no

liability for erroneous information or its consequences. Trademarks used from other companies refer exclusively to the

products of those companies.

Revision: Rev. 1 / 11.05.2021

Rev. Date/Initial Changes

1 11.05.2021/Wi Initial Revision

emSBC-Argon DebianManual 2/32 Rev. 1 / 11.05.2021

Contents

1 Terms and de�nitions 5

2 Introduction 6

3 Requirements for the development PC 7

3.1 Requirement on the development PC for network boot of the target . 7

4 Device connection 9

4.1 Serial console preparations . 9

4.2 Device boot . 9

4.2.1 Default login credentials . 9

4.3 Network setup . 10

4.4 Using DHCP . 10

4.5 Using a �xed IPv4 address . 10

4.6 Network con�guration check . 11

5 Booting Linux 12

5.1 Boot con�guration . 12

5.2 Stand alone boot . 12

5.3 Network remote boot . 13

6 Device software components 14

6.1 Bootloader (U-Boot) . 14

6.1.1 Basic U-Boot operation . 14

6.1.2 Boot architecture . 15

6.1.3 Network con�guration . 15

6.1.3.1 Network setup using DHCP . 15

6.1.3.2 Network setup with static addresses . 16

6.1.3.3 Network troubleshooting in U-Boot . 16

6.1.4 Prede�ned macros . 16

6.1.4.1 Macros intended to update the complete system . 17

6.1.5 U-Boot recompilation . 17

6.2 emPURS . 17

6.2.1 emPURS for production purposes . 18

6.3 Restoring the Root Filesystem . 18

6.4 Linux kernel . 18

6.4.1 Kernel-package recompilation . 19

6.5 Debian BSP . 19

6.5.1 Board support packages . 19

6.5.1.1 emboot . 19

6.5.2 Development con�guration . 19

emSBC-Argon DebianManual 3/32 Rev. 1 / 11.05.2021

7 Custom Debian BSP creation 20

7.1 Embedded Linux build system . 20

7.1.1 Setup elbe on the host . 20

7.1.2 Virtual build machine preparation . 20

7.1.3 Custom Debian BSP creation . 21

7.2 Local repository server . 21

7.2.1 Apache installation and con�guration . 21

7.2.2 Basic repository con�guration . 22

7.2.3 Managing Debian packages . 22

8 Common tasks 24

8.1 Find packages . 24

8.2 Add or remove packages . 24

8.3 Network con�guration . 25

8.4 OpenAMP demo . 25

8.4.1 Prerequisite . 25

8.4.1.1 Adding Debian Package . 25

8.4.2 OpenAMP_FreeRTOS_echo . 25

8.4.3 OpenAMP_raw . 26

8.5 Custom application autostart . 27

8.6 Peripherals access . 28

8.6.1 GPIOs . 28

8.7 Source code acquisition . 29

9 Getting help 30

9.1 Known Issues . 30

9.2 Support center . 30

9.3 Debian documentation and community . 30

9.4 Commercial support . 30

9.5 Technical support . 31

10 Appendix 32

10.1 emSTAMP-series . 32

10.1.1 emSTAMP-Argon . 32

10.1.1.1 on emSBC-Argon . 32

emSBC-Argon DebianManual 4/32 Rev. 1 / 11.05.2021

1 Terms and de�nitions

The table below lists some de�nitions of terms in this manual.

Term De�nition

Target Synonym for the embedded device

Host Workstation, Developer PC

Toolchain Compiler, Linker, etc.

RootFS Root �le system, contains the basic operating system

Console Text terminal interface for Linux

NFS Network File System, which can share directories over network

NFS_SHARE Location that is exported by the NFS for the purpose of updating and booting by using NFS

U-Boot Bootloader, hardware initialization, updating images, starting OS

IDE Integrated Development Environment

OS Operating System

SoC System on chip

BSP Board Support Package

SDK Software Development Kit

DFU Device Firmware Upgrade mode, allows all devices to be restored from any state

STM32CubeProg An all-in-one multi-OS software tool for programming STM32 products

Table 1.1: Terms and de�nitions

emSBC-Argon DebianManual 5/32 Rev. 1 / 11.05.2021

2 Introduction

Welcome to emtrion’s Debian-based Linux board support package. This short manual gives you a startup with our BSP. It

describes how to setup your host PC to develop your application for the emtrion developer kit hardware. Furthermore,

it gives you a quick introduction to Debian, and explains our motivation behind our decision to release a Debian-based

BSP.

It is assumed that users of emtrion Linux developer kits are already familiar with Linux. General Linux and programming

knowledge are out of the scope of this document. emtrion gladly assists you in acquiring this knowledge. If you are

interested in training courses or getting support, please contact the emtrion sales department via sales@emtrion.de.

This guide shows you how to get started with the developer kit. It also explains how to setup a network connection.

The examples in this manual are demonstrated on speci�c hardware, however, if not mentioned otherwise, they work

on all supported emtrion devices.

V Attention

Our server may be used in combination with our developer kits only. The servers are not meant to be used from

�nal devices in the �eld. emtrion reserves its right to change the access permissions to the server as well as the

support for certain platforms at any time.

emSBC-Argon DebianManual 6/32 Rev. 1 / 11.05.2021

mailto:sales@emtrion.de

3 Requirements for the development PC

For using emtrion’s Development Kit you need a PC - or a virtual machine - which you can use as a development PC. On

the development PC you can create your application and/or create your root �lesystem. Both are running on the target.

As operating system for the development PC, we recommend the current stable release of the Debian distribution

which at the time of writing this manual is Debian 10 (Codename Buster). Regardless, you can also use an other Linux

distribution. But in this case the commands required on the development PC may di�er from the commands listed in

this manual.

� Info

Please understand that emtrion can not guarantee full functionality if another distribution is used. However,

emtrion can support you as part of the commercial support in the cause search if there are issues comming up.

More information how you get commercial support you will �nd in chapter 9.4.

3.1 Requirement on the development PC for network boot of the target

The target device can boot a root �le system from the network when it is made available via NFS. For the development

PC to be able to provide the root �le system, a NFS server must be installed and con�gured on it.

The development PC have to ful�ll two requirements:

• the NFS server components must be installed

• the directory with your target root �lesystem has to be exported

On Debian or Ubuntu the NFS server can be installed using these commands:

1 sudo apt install nfs -kernel -server nfs -common

Depending on the bootloader version, the NFS protocol version 2 is required. Newer versions of Debian or Ubuntu

distribution have disabled this protocol version by default. To activate, you have to edit the �le /etc/default/nfs-kernel-

server. You have to add the part –nfs-version 2 to the parameter RPCNFSDCOUNT :

1 RPCNFSDCOUNT ="8 --nfs -version 2"

After you have modi�ed the �le /etc/default/nfs-kernel-server you have to restart the NFS service

1 sudo systemctl restart nfs -kernel -server

If the NFS server is installed you have to export the directory where the root �lesystem for the target is stored. Instead

of this directory it’s su�cient if you export a parent directory of this directory. The following example allows access to

the directory /home/hico/nfs/rootfs and all subdirectories below.

emSBC-Argon DebianManual 7/32 Rev. 1 / 11.05.2021

1 # /etc/exports: the access control list for filesystems which may be exported

2 # to NFS clients. See exports (5).

3

4 /home/hico/nfs *(rw,sync ,no_subtree_check ,crossmnt ,no_root_squash)

Listing 3.1: example /etc/export �le

When you modify the �le /etc/exports you have to restart the NFS service on your development PC:

1 sudo systemctl restart nfs -kernel -server

Instead of restarting the NFS service you can use the following command to introduce the NFS service to reload the

con�guration

1 sudo exportfs -ra

emSBC-Argon DebianManual 8/32 Rev. 1 / 11.05.2021

4 Device connection

4.1 Serial console preparations

After starting Linux you can log into the console. This is located on the same serial interface as the bootloader console.

This serial interface also output the startup messages of Linux. You will �nd this serial interface on the connector

J26 on the Avari base board, on the connector J8 (UART A) on the Bvari base board and on the connector J4 on the

emSBC-Argon base board. On your development PC you need a serial terminal application such as picocom. The

communication settings are:

baud rate 115200 bps

data bits 8

stop bits 1

parity none

handshake none

Table 4.2: communication settings

Example using picocom (exchange ttyUSB0 with the corresponding UART on your development PC)

1 sudo apt install picocom

2 sudo picocom -b 115200 /dev/ttyUSB0

4.2 Device boot

The devices in our development kits are con�gured to boot automatically from the integrated mass storage device.

Depending on the hardware platform this might be SLC-�ash or an eMMC storage. The autostart can be interrupted

during the 3 second timeout and then recon�gured as described in chapter 5.

4.2.1 Default login credentials

The default-login credentials for the Debian-based BSP’s released by emtrion are

• Username: root

• Password: hico

emSBC-Argon DebianManual 9/32 Rev. 1 / 11.05.2021

4.3 Network setup

After the System has completed its boot-process, the network interface of the device has to be con�gured. Basically,

two setups are possible, depending on your company’s requirements. The following sections show you how to do a

temporary network setup. Please refer to the detailed BSP documentation in chapter 8.3 if you require instructions for a

permanent con�guration.

4.4 Using DHCP

To receive an IP from theDHCP server and to setup the interfaces, run the following commandonyour device. Depending

on the network environment, this can take anything, from a few seconds up to around one minute for auto negotiation

and address setup. To check if the setup was successful, please refer to section 4.6

1 root@device ~# dhclient eth0

Listing 4.1:

4.5 Using a �xed IPv4 address

The �xed IP-address setup requires a fewmore steps than the auto con�guration. Besides the address setup, it is also

recommended to con�gure a nameserver in order to be able to install packages and communicate with the internet.

You require the following information before starting:

1. IP-address to be used on the device

2. Network mask

3. Nameserver address

4. Gateway IP (optional)

5. Broadcast address (optional)

The powerful ip utility is used for the network interface setup, which is the successor of the well known ifcon�g. The

netmask has to be transformed into CIDR notation, which uses the number of ones in the netmask, corresponding to

its binary representation, appended to the IP-Address. The netmask 255.255.0.0, for example, results in a /16 su�x. In

combination with the IP-address 172.26.1.2 it results in 172.26.1.2/16.

1 root@device ~# ip address add 172.26.1.2/16 dev eth0

Listing 4.2:

With optional broadcast address:

1 root@device ~# ip address add broadcast 172.26.255.255 dev eth0

Listing 4.3:

Adding the default gateway (e.g. 172.26.1.1):

emSBC-Argon DebianManual 10/32 Rev. 1 / 11.05.2021

1 root@device ~# ip route add default via 172.26.1.1

Listing 4.4:

Finally, the nameserver has to be con�gured to match your environment. Simply write the con�guration /etc/resolv.conf

�le as shown below (we are using 172.26.1.255 as nameserver in this example):

1 root@device ~# echo "nameserver 172.26.1.255" > /etc/resolv.conf

Listing 4.5:

4.6 Network con�guration check

For this, simply run ip addr show eth0 to see your network interface setup. Depending on the chosen setup, the correct

information is displayed.

1 root@device ~# ip addr show eth0

2 2: eth0: <BROADCAST ,MULTICAST ,UP,LOWER_UP> mtu 1500 qdisc mq state UP group

default qlen 1000

3 link/ether 00:1c:1e:08:e4:45 brd ff:ff:ff:ff:ff:ff

4 inet 172.26.4.95/16 brd 172.26.255.255 scope global dynamic eth0

5 valid_lft 34179 sec preferred_lft 34179 sec

6 inet6 2003:5a:a012:1:21c:1eff:fe08:e445/64 scope global dynamic mngtmpaddr

7 valid_lft 2591861 sec preferred_lft 604661 sec

8 inet6 fe 80::21c:1eff:fe08:e445/64 scope link

9 valid_lft forever preferred_lft forever

10 root@device ~#

Listing 4.6: Verifying the network con�guration

emSBC-Argon DebianManual 11/32 Rev. 1 / 11.05.2021

5 Booting Linux

The preinstalled bootloader o�ers several possibilities to boot the system. A detailed description of its con�guration

and features is included in chapter 6.1. There is also a short introduction into the basic usage of U-Boot. The following

chapter describes the available boot modes and their con�guration.

5.1 Boot con�guration

You can con�gure the U-Boot’s boot mode by setting the environment variable bootcmd to the corresponding value.

There is a default delay of 3 seconds for the command execution, this can be changed by modifying the environment

variable bootdelay. The default boot mode is already setup and saved into the environment as an example.

V Warning

If the bootdelay is set to zero, the prompt cannot be accessed anymore.

1 U-Boot > setenv bootcmd ’run sd_boot ’

2 U-Boot > saveenv

Listing 5.1: Setting your own bootcmd variable

5.2 Stand alone boot

The stand-alone boot mode implemented in most emtrion modules is named flash_boot. As the name already

indicates, the needed system components are loaded from the local �ash memory (e.g. eMMC) into RAM, where they

get executed. It is also the default bootsource of all emtrion modules with pre-installed Linux BSPs. To use it, please

check the base requirements described in chapter 6.1 Bootloader (U-Boot). You can manually execute it by using the

following command inside the U-Boot prompt:

1 U-Boot > run flash_boot

Listing 5.2: Running the default boot command flash_boot

emSBC-Argon DebianManual 12/32 Rev. 1 / 11.05.2021

5.3 Network remote boot

Also a remote network-based boot mode is available on most systems. It loads the system components from a remote

storage into the local RAM and executes them there. The usage of any remote �le system has to be supported by the

chosen operating system, in this case Linux.

A default network con�guration is used in the bootloader to gain the IP-address. It can also be con�gured to use a

static setup. Please refer to chapter 6.1 Bootloader (U-Boot) for detailed instructions.

NFS is the network based boot mode described and supported in this BSP. Some basic con�gurations are needed

before the network boot can be done. First of all, the remote station - the development PC - must have an running and

con�gured NFS server (see 3.1). Then there are some instructions left to execute on the target. For the list below we

assume that the NFS server exports the directory /home/hico/nfs/ and it’s subdirectories. We also assume that the

development PC uses the IP address 172.26.1.1 on it’s network interface. Then we assume that the root �lesystem to

boot is stored in the directory /home/hico/nfs/rootfs on the development PC.

1 U-Boot > setenv serverip 172.26.1.1

2 U-Boot > setenv nfsroot /home/hico/nfs/rootfs

3 U-Boot > run net_boot

Listing 5.3: Set serverip and nfsroot and boot via NFS

emSBC-Argon DebianManual 13/32 Rev. 1 / 11.05.2021

6 Device software components

6.1 Bootloader (U-Boot)

The basic task of U-Boot is to read the operating system dependencies from bulk memory into RAM and start its kernel.

It is also possible to update several components of the system by using the bootloader functionalities. emtrion ’s U-Boot

version contains several useful extensions, which are explained in the following sections.

6.1.1 Basic U-Boot operation

To work with U-Boot, please use a terminal program to connect to the serial line of the board �rst of all. As soon as

the U-Boot prompt appears on the terminal, U-Boot is ready to receive commands. To interrupt the automatic boot

mechanism, press any key on your keyboard whilst using a terminal. Here you can �nd the U-Boot documentation:

http://www.denx.de/wiki/U-Boot/Documentation

U-Boot has a set of environment variables which are used to store all information needed for booting the operating

system. Variables can contain information such as IP addresses, but they can also contain a whole script of actions which

are to be performed sequentially. The following commands explain the basic handling of environment variables and the

custom emtrion command to restore the default settings: Beside the basic commands, there are a few emtrion-speci�c

U-Boot command Explanation

printenv [variable]

This shows the value of the speci�ed variable. If no variable is speci�ed, the whole

environment is shown

setenv [variable] [value] Set a variable to a speci�c value. If no value is speci�ed, the variable gets deleted.

saveenv Make your changes permanent, so they remain after power o� or reboot.

run [script_variable]

Tries to execute the commands contained inside the script_variable, which in fact is a

variable as noted above.

Table 6.1: Basic U-Boot commands

environment variables which are not intended to be changed by the end customer. Once deleted, there is no way to

restore them automatically.

Environment variable Explanation

ethaddr The ethernet MAC address of the system.

hw_serial_nr The serial number of the CPU-module or SBC.

hw_revision The hardware revision of the CPU-module.

hw_product_type Product name of the module as printed on the label above the barcode.

Table 6.3: Prede�ned environment variables

emSBC-Argon DebianManual 14/32 Rev. 1 / 11.05.2021

http://www.denx.de/wiki/U-Boot/Documentation

6.1.2 Boot architecture

emtrion uses a boot-architecture, which depends on a �le contained in the corresponding root�lesystem. The intention

is to enable the bootloader to load di�erent operating systems, so there is no need to change the bootloader. Fur-

thermore, it is possible to change the system’s boot-behavior during in-�eld modi�cations without needing to access

the bootloaders environment. In default con�guration, the U-Boot version delivered by emtrion tries to load the �le

uboot_script from the directory /boot/ inside the speci�ed partition or network path (corresponding to the selected

boot mode). If the local �ash is speci�ed as boot source, the partition holding the directory boot can be formatted in

any version of the ext-�lesystem or fat-�lesystem.

­ Note

Depending on the version of U-Boot on the module it may be mandatory to have the partition formatted

without 64Bit support due to recent changes in the default of the extended �le system. For this, please call the

mkfs.ext4 utility in combination with the following options:

mkfs.ext4 –O^64bit,^metadata_csum

The script, used by the boot system parts contained in U-Boot, has to export at least the following variables, which

have to be executable by the run command. They follow the format uboot_script_ + action_name. A reference

implementation can be found in emtrion’s developer kits. A short description of those variables can be found in Table

6.4 Script variables inside uboot_script.

Script variable purpose

uboot_script_update_rootfs

Load emPURS components and start the update of the root�lesystem. empurs_cmd

update_rootfs has to be set by the script.

uboot_script_net_boot

Extension of net_boot script contained inU-Boot. The script is responsible for loading

all needed components like kernel, device tree and initrd. It also has to setup all

bootargs for the remote boot.

Table 6.4: Script variables inside uboot_script

The script variables denoted in the table above are used in several prede�ned U-Boot macros, which are described in

detail in Chapter 6.1.4 Prede�ned macros.

6.1.3 Network con�guration

The U-Boot network con�guration has to be set by using environment variables. There are two options supported by

emtrion, we recommend the �rst one, which is auto con�guration by DHCP. The second option is a static address setup.

In general, the con�guration is handled by the script configure-ip, which depends on the variable ip-method itself.

Two values are allowed for this variable, as described in the following chapter. The �rst one is dhcp, the second one

static. The configure-ip script also creates the correct command line for the Linux kernel network con�guration via

the ip= kernel command line parameter.

6.1.3.1 Network setup using DHCP

In order to con�gure the usage of the DHCP protocol in U-Boot for the use with prede�ned scripts like net_boot, please

set the variable ip-method to dhcp.

emSBC-Argon DebianManual 15/32 Rev. 1 / 11.05.2021

1 U-Boot > setenv ip-method dhcp

2 U-Boot > run net_boot

Listing 6.1: Set the ip-method to dhcp

You can also obtain an IP address manually via the U-Boot command dhcp. It is recommended to set the environment

variable autoload to no, otherwise U-Boot tries to load an optionally provided �le from the DHCP server via the TFTP

protocol. If this �le is not found, the received address is not kept for later usage.

1 U-Boot > setenv autoload no

2 U-Boot > dhcp

3 BOOTP broadcast 1

4 DHCP client bound to address 172.26.1.2 (4 ms)

Listing 6.2: Setting autoload to no

6.1.3.2 Network setup with static addresses

Besides auto con�guration via the DHCP protocol, it is also possible to adjust the IP address settingsmanual. As denoted

in the section above, the ‘con�gure-ip’ script can be used to setup the Linux-kernel parameters. To use scripts or U-Boot

network commands like ‘nfs’ or ‘tftp’, it is required to set the following environment variables:

Environment Variable Explanation

ipaddr The IP address to be used by the device.

serverip IP address of the server to interact with.

netmask The network mask of the network, to which the device will be connected.

gatewayip

(Optional) IP address of the gateway to be used. This is only necessary if the device and

the server are not in the same network

Table 6.5: Network con�guration variables

6.1.3.3 Network troubleshooting in U-Boot

If you are facing di�culties when using any of the prede�ned scripts or your own commands, you can simply check the

basic connection and correct address setupbyusing theping command inU-Boot. Pleasenote, this ping implementation

is very limited and only checks once the availability of the host.

­ Note

As name resolution is not available in U-Boot, you have to know the IP address of the hosts you want to

communicate with.

6.1.4 Prede�nedmacros

The emtrion U-Boot variants have a set of prede�ned common macros: There are three major variant groups. The

following sections give you a brief overview of their usage and the intention behind them. The �rst group contains

general-purpose macros, responsible for booting the system. Secondly, there are macros intended to update or restore

emSBC-Argon DebianManual 16/32 Rev. 1 / 11.05.2021

the operating system. The lasts group consists of macros to update the bootloader itself, which should only be used if

instructed to do so.

Macro Variable Explanation

con�gure_ip

As described in section 6.1.3 Network con�guration, this macro con�gures and validates the

network depending on the value of the variable ip-method

�ash_boot Starts the operating system contained in the �ash memory of the system.

net_boot

Starts the operating system available on remote-storage and exported by NFS. It needs a valid

network setup, as described in section 6.1.3 Network con�guration, as well as the correct setup of

the environment variables serverip and nfsroot.

Table 6.6: Prede�nedmacros

6.1.4.1 Macros intended to update the complete system

Macro Variable Explanation

update_rootfs Is used to update the operating system installed in the �ash memory.

Table 6.7: Prede�nedmacros to update the operating system

6.1.5 U-Boot recompilation

In case you want to recompile the U-Boot binary yourself, follow the instructions. In the example below, the U-Boot

version v2020.01 is used.

Recompile the second stage bootloader

1 $ make ARCH=arm CROSS_COMPILE=arm -linux -gnueabihf - emsbc -argon_defconfig

2 $ make ARCH=arm CROSS_COMPILE=arm -linux -gnueabihf - -j$(nproc)

Listing 6.3: Cross-compiling on the host

This creates multiple di�erent binaries. The U-Boot binary used in the trusted environment boot is u-boot.stm32.

In chapter "8.7 Source code acquisition" is described, how the source-code for several-packages can be obtained.

6.2 emPURS

The acronym emPURS stands for emtrion Production Update and Recovery System. It is intended to be used for

production, update and recovery tasks. To make use of its features there are several requirements to be met. In this

section, the basic operation of emPURS is described. If your hardware is supported by emPURS, you can �nd speci�c

manuals and packages on the emtrion support pages, describing all detailed steps required. The emPURS ecosystem is

a modular, script based, approach to setup and restore onboard �ash memory content of your emtrion module. The

�rst component of emPURS is a script executed inside the initial ram disk (initrd). If no empurs_cmd is found in the

kernel command line, it proceeds to start the system. If an emPURS command is detected, the emPURS_plat script as

well as the steps con�gured inside get executed. The Debian root�lesystem wipes the system partition and reinstalls

the Debian-BSP exported by the NFS-share.

emSBC-Argon DebianManual 17/32 Rev. 1 / 11.05.2021

6.2.1 emPURS for production purposes

For several core modules, emtrion o�ers support for using emPURS to produce boards with pre-de�ned software

packages. Documentation of how to use this particular emPURS version is available in the hardware section of each

supported module on the support pages.

6.3 Restoring the Root Filesystem

If you want to restore the Debian Root Filesystem, you can do so via U-Boot and a NFS server share.

First setup the NFS server on your development PC as described in chapter 3.1. Then extract the restore.tar.gz

archive to your development PC to folder /home/hico/nfs/restore. The directory structure should then look like this:

1 hico@ntb 004:~$ ls -la /home/hico/nfs/restore/boot

2 total 101216

3 drwxr -xr-x 2 root root 4096 Jul 6 16:46 .

4 drwxr -xr-x 3 root root 4096 Jul 6 16:13 ..

5 -rwxr -xr-x 1 root root 18501 Jul 6 16:14 emPURS_plat

6 -rw-r--r-- 1 root root 91673186 Jul 6 16:14 emsbc -argon -buster.tar.gz

7 lrwxrwxrwx 1 root root 16 Jul 6 16:46 linux -> linux -5.4.56. itb

8 -rw-r--r-- 1 root root 5005124 Jul 6 16:14 linux -5.4.56. itb

9 -rw-r--r-- 1 root root 6920537 Jul 6 16:14 ramdisk -emsbc -argon.rootfs.cpio.gz

10 -rw-r--r-- 1 root root 1571 Jul 6 16:14 uboot_script

Listing 6.4: Files in NFS server share /home/hico/nfs/restore/boot

Then start the system and hit any key to stop autoboot. You then have a U-Boot shell. First set the nfsroot and serverip

environment variables:

1 STM32MP> setenv nfsroot /home/hico/nfs/restore

2 STM32MP> setenv serverip [IP address of your development PC]

Listing 6.5: Set environment variables

Finally, you can start the restore process via update_rootfs:

1 STM32MP> run update_rootfs

Listing 6.6: Start restore

Do not turn of the system while the restore process is running. The system will reboot into Debian after the restore

process has �nished.

6.4 Linux kernel

The Linux Kernel used in emtrion ’s recent BSPs is a position independent image. This image depends on the device-tree

support, which has been introduced in recent versions of emtrion BSPs. The device-tree replaces the outdated board�le.

It is an extra �le, describing the hardware platform on which the kernel is running on. New technologymakes it possible

to have one kernel image running on several di�erent boards, as it might be known from personal computers.

emSBC-Argon DebianManual 18/32 Rev. 1 / 11.05.2021

https://support.emtrion.de

6.4.1 Kernel-package recompilation

During your evaluation it might be necessary to re-build the kernel to include custom drivers or con�guration changes.

This chapter gives you a short overview on how to create a Debian package. In the following examples, the kernel

version 5.4.76 is used. After each Debian package build, the resulting packages get placed in the folder located above

the kernel source tree. To install the resulting images, please refer to chapter "8.2 Add or remove packages".

Compile Kernel and create Debian package

1 $ export DEBFULLNAME ="Your Name"

2 $ export DEBEMAIL ="your.email@domain.net"

3 $ make ARCH=arm CROSS_COMPILE=arm -linux -gnueabihf - emsbc -argon_defconfig

4 $ make ARCH=arm CROSS_COMPILE=arm -linux -gnueabihf - -j$(nproc) FIT_SOURCE_FILE=

fit_image.its LOCALVERSION= fit -deb -pkg

Listing 6.7: Cross-compiling on the host

In chapter 8.7 Source code acquisition is described, how the source-code for several-packages can be obtained.

6.5 Debian BSP

6.5.1 Board support packages

Several non-standard packages are included in the emtrion Debian BSP. They provide support for emtrion speci�c

functionalities. The following sections describe these packages, their contents and purpose.

6.5.1.1 emboot

The emboot package contains �les and con�gurations necessary to boot the systemon emtrion based boards containing

the original �rmware. A detailed description of the �rst �le, called uboot_script, can be found in chapter 6.1.2. The

second �le provided by this package is a base-con�guration of emPURS, enabling the restoration of the system with

the developer-Kit VM. There are also some hooks in initramfs-tools, a tool-suite used to dynamically create an

initial Ramdisk. The purpose of these hooks is to install emPURS into the initial Ramdisk and to make sure that all of

its dependencies are installed. Finally there are some notable scripts to support the system boot with a devicetree.

On recent ARM-kernels, the devicetree is used to describe the hardware instead the outdated board�le. To load

uboot_script during startup, the devicetree �les have to be in the right place with the correct naming. Two scripts

are used to achieve this. They are placed inside the kernel installation/removal hooks (/etc/kernel/postinst.d/;

/etc/kernel/postrm.d/; �lename uboot_setup). Those hooks are executed every time a new kernel is installed or an

old one removed. They ensure the availability of the devicetree, supporting the corresponding emtrion hardware, in

the current kernel during execution. And if this is not the case, they ensure the system to stay bootable.

6.5.2 Development con�guration

The standard Debian BSP is intended to be used as a development system only! Therefore some special adaptations and

settings have beenmade. The default Debian BSP contains a lot of development and documentation packages resulting

in a huge amount of used disk space. Optimized images are available through commercial support (ref. chapter 9.4).

emSBC-Argon DebianManual 19/32 Rev. 1 / 11.05.2021

7 Custom Debian BSP creation

7.1 Embedded Linux build system

The emtrion Debian image running on your system was created by using the Embedded-Linux-Build-Environment

(elbe) developed by Linutronix. Its key bene�t is to create reproducible Debian images for embedded systems out of

the Debian binary packages, without polluting the host system. It therefore creates its own virtual machine, which is

used as a build container. The images used in the Virtual Machine. The o�cial elbe documentation is available under

https://elbe-rfs.org/docs/.

7.1.1 Setup elbe on the host

As already mentioned, elbe is developed by Linuxtronix and available through their servers. The elbe installation is

relatively simple and requires a few steps only. The easiest way is to use pre-built binaries, which are available on

the server. To use pre-built binaries, the server address has to be added to the Virtual-Machines apt-settings �rst. As

described in chapter 3.1, it is necessary to have the virtualization extensions available inside the Virtual-Machine.

1 $ echo "deb http :// debian.linutronix.de/elbe buster main" > /etc/apt/sources.

list.d/linutronix

2 $ echo "deb http :// debian.linutronix.de/elbe -common buster main" >> /etc/apt/

sources.list.d/linutronix

It is also recommended to install the linuxtronix gnupg key from their repository:

1 $ wget http :// debian.linutronix.de/elbe -common/elbe -repo.pub

2 $ sudo apt -key add elbe -repo.pub

Finally, package lists are updated and elbe packages can be installed:

1 $ sudo apt update

2 $ sudo apt install elbe elbe -doc

7.1.2 Virtual build machine preparation

As described in previous sections, elbe uses a Virtual Machine as a build-container. It has to be created once, prior to

the creation of custom root �le systems.

V Warning

This step requires at least 80 GB of free hard disk space!

emSBC-Argon DebianManual 20/32 Rev. 1 / 11.05.2021

https://elbe-rfs.org/docs/

1 $ elbe initvm -directory /path/to-place/elbe -vm/ create

7.1.3 Custom Debian BSP creation

Once the initial elbe Virtual Machine is created, it can be fed with project con�gurations in xml-format, as described in

the o�cial elbe documentation. However, it is recommended to ensure the virtual machine instance is up and running

beforehand.

1 $ cd /path/to-place/elbe -vm/

2 $ elbe initvm ensure

If this is the case, the project XML can be sent into the virtual machine. elbe includes the XML used for its creation in the

root-�le-system ’image built’ under /etc/elbe_base.xml by default. In addition to the plain project XML, this �le does

also include information of the package versions used during the initial build. It is recommended to remove this �le in

a �netuning rule, as it contains information like passwords in plain text. However, it is included in the development

Image to enable our customers to recreate their own Images using elbe.

1 $ cd /path/to-get/elbe -xml/

2 $ elbe initvm -output /path/to-drop/elbe -rfs/ submit emsbc -argon -buster -noX.xml

Listing 7.1: Create Debian image for emSBC-Argon

7.2 Local repository server

To serve own custom packages, it is necessary to have a local repository server available. The following sections give

an overview on how to setup a local package archive with reprepro served by the apache webserver. The following

instructions do not include security settings, it is highly recommended to restrict access to several components of the

repository.

7.2.1 Apache installation and con�guration

A local webserver is required to handle the repository creation described in the following sections. Apache2 packages

are used as a base for this task.

1 $ sudo apt install apache2 reprepro

The apache webserver handles the directory /var/www/ on Debian installations by default. In recent distributions,

every site-con�guration has its own subfolder inside.

emSBC-Argon DebianManual 21/32 Rev. 1 / 11.05.2021

7.2.2 Basic repository con�guration

A repository created by reprepro has the following structure. The ‘conf’ folder, containing con�guration �les, has to be

created to get this set up. The rest of the structure is created automatically during the repository setup phase.

.

conf

distributions

db

dists

buster

contrib

binary-armhf

source

main

binary-armhf

source

non-free

binary-armhf

source

stable→ buster

pool

Figure 7.1: Directory Structure

The db folder is used for internal functions of the repository and is automatically created by reprepro during initialization.

Inside the pool folder, all packages are contained, sorted by their pre�xes. Finally, inside dists is a directory structure

for every distribution, containing �le lists with all packages inside the distribution. As it is possible to have packages

referenced in multiple distributions, it does not require additional memory to have packages in multiple distributions.

To generate the directory structure described above, the �le distribution has to be created. The following snippets

show how to create the base structure in the exemplary directory /var/www/debian. Finally, the contents of a minimal

distributions �le are shown.

1 $ mkdir -p /var/www/debian/conf

1 Origin: Simple Test Repository

2 Codename: buster

3 Suite: stable

4 Architectures: armhf source

5 Components: main non -free

Listing 7.2: Example of �le ‘distributions’

7.2.3 Managing Debian packages

To add packages to the already created repository, reprepro has to be called using one of the following parameters:

include, includedeb, includeudeb or includesrc. The following sections brie�y describe include and includedeb. A full

documentation is included inside the man-pages of reprepro.

emSBC-Argon DebianManual 22/32 Rev. 1 / 11.05.2021

Importing binary only packages

The fastest way to add single packages to the repository is to add binary packages without their source information. To

include those binary packages, simply call reprepro with includedeb, as shown in the following example. The repository

used in this example is located in /var/www/debian/

1 $ reprepro -b /var/www/debian/ includedeb buster emboot _1.1 -1_ armhf.deb

Importing package groups with source code

Beside the possibility to import single packages, ‘reprepro’ o�ers the possibility to include all packages belonging

to one build of a source package, including the package source code (if not already imported). Therefore, a Debian

package build process creates the ‘.changes’ �le, containing information about created binaries and the source package.

1 $ reprepro -b /var/www/debian/ include buster emboot _1.1 -1_ armhf.changes

This triggers the process of uploading all �les referenced inside the ‘.changes’ �le, adding them to the referenced

distribution.

Adding a package to multiple distributions

During the development process it might be useful to add a package to multiple distributions. Normally reprepro

fails, if the distribution referenced inside the changelog of the package does not match the distribution into which

the package should be included to. To overwrite this, the wrongdistribution option has to be passed to the include

parameter as shown in the following snippet.

1 $ reprepro --ignore=wrongdistribution -b /var/www/debian/ include ...

Listing packages included in the repositories

To see all packages contained in one distribution, ‘reprepro’ provides the ‘list’ command. It is very useful to check if

everything is setup correctly and if all packages have been included properly.

1 $ reprepro -b /var/www/debian list buster

emSBC-Argon DebianManual 23/32 Rev. 1 / 11.05.2021

8 Common tasks

8.1 Find packages

There are several ways to �nd Debian packages. The �rst one uses the Debian Packages Search on the web. The URL

is https://packages.debian.org/index. There are possiblites to search in package names, descriptions and/or �le

names which are included in the packages.

The second way uses the package manager ‘apt’ which is available on a Debian device.

1 root@device# apt search <keyword >

Listing 8.1: Package search using apt

The keyword is searched as part of the package names / descriptions and the names of the included �les.

The command

1 root@device# dpkg -l

Listing 8.2: List installed debian packages

can be used to �nd out which packages are installed. Use

1 root@device# dpkg -l | grep -i keyword

Listing 8.3: Search for keyword in installed debian packages

to �nd a keyword in the name or description of an installed package.

8.2 Add or remove packages

Mainly two ways exist for adding or removing Debian packages. The �rst one is the ‘apt’ way using a remote repository

as package source. The second is the o�ine or local way using ‘dpkg’. Both can equally be used to add or remove

packages.

1 root@device# apt install examplepackage

2 root@device# apt remove examplepackage

Listing 8.4: Installation and removal using apt

1 root@device# dpkg -i examplepackage _ version _armhf.deb

2 root@device# dpkg -r examplepackage

Listing 8.5: Installation and removal using dpkg

emSBC-Argon DebianManual 24/32 Rev. 1 / 11.05.2021

https://packages.debian.org/index

8.3 Network con�guration

Even if systemd is used, theDebiannetwork con�guration can still bedonevia thewell-known/etc/network/interfaces

�le. This results in a permanent network setup. If you want to con�gure the network temporarily, please refer to chapter

4.3 Network setup. Corresponding to the main network interface, eth0 is used as an interface in the following examples.

To con�gure the network with DHCP, place the following information into /etc/network/interfaces:

1 allow -hotplug eth0

2 iface eth0 inet dhcp

For a static ip-Setup, the following entries can be used (exemplarily):

1 allow -hotplug eth0

2 iface eth0 inet static

3 address 172.26.1.2

4 netmask 255.255.255.0

5 gateway 172.26.1.1

8.4 OpenAMP demo

The STM32MP157 being an MPU gives the users the �exibility to use the M4 coprocessor in conjunction with the A7

processor. The Debian-based BSP is delivered with OpenAMP demos.

8.4.1 Prerequisite

8.4.1.1 Adding Debian Package

The openamp-demo package is already installed by default. The installed demo �les can be found under /opt/openamp-

demo/ directory.

If the openamp-demo directory is not available, then follow these instructions to add the demo package on the target.

To add the package, update the package-list and then install the package.

1 root@device# apt update

2 root@device# apt install openamp -demo

8.4.2 OpenAMP_FreeRTOS_echo

1. The demo starts the Cortex-M4 processor and initializes OpenAMP Middleware.

2. CM4 creates an rpmsg channel for a virtual UART instance: UART0.

3. When the FreeRTOS Thread (Idle) is launched, LED_RED Blink periodically while it is waiting for messages from

Cortex-A7 processor.

4. When the CA7 receives a message from CM4 through UART0, the state of LED_GREEN changes.

Steps to start the demo:

emSBC-Argon DebianManual 25/32 Rev. 1 / 11.05.2021

1 root@device# cd /opt/openamp -demo/OpenAMP_FreeRTOS_echo

2 root@device :/opt/openamp -demo/OpenAMP_FreeRTOS_echo# ./fw_cortex_m4.sh start

1 [117.532976] remoteproc remoteproc 0: powering up m4

2 [117.542347] remoteproc remoteproc 0: Booting fw image OpenAMP_FreeRTOS_echo.

elf , size 2803560

3 [117.550681] remoteproc 0#vdev0buffer: assigned reserved memory node vdev0

buffer@ 10044000

4 [117.558135] virtio_rpmsg_bus virtio 0: creating channel rpmsg -tty -channel

addr 0x0

5 [117.563621] virtio_rpmsg_bus virtio 0: rpmsg host is online

6 [117.565728] rpmsg_tty virtio 0.rpmsg -tty -channel .-1.0: new channel: 0x400 ->

0x0 : ttyRPMSG0

7 [117.578310] remoteproc 0#vdev0buffer: registered virtio0 (type 7)

8 [117.585366] remoteproc remoteproc 0: remote processor m4 is now up

Listing 8.6: Linux Console Messages

Steps to run the demo:

1 root@device :/opt/openamp -demo/OpenAMP_FreeRTOS_echo# stty -onlcr -echo -F /dev/

ttyRPMSG0

2 root@device :/opt/openamp -demo/OpenAMP_FreeRTOS_echo# cat /dev/ttyRPMSG0 &

3 root@device :/opt/openamp -demo/OpenAMP_FreeRTOS_echo# echo Ping > /dev/ttyRPMSG0

Steps to stop the demo:

1 root@device :/opt/openamp -demo/OpenAMP_FreeRTOS_echo# ./fw_cortex_m4.sh stop

1 [3529.462781] rpmsg_tty virtio 0.rpmsg -tty -channel .-1.0: rpmsg tty device 0 is

removed

2 [3529.973065] remoteproc remoteproc 0: warning: remote FW shutdown without ack

3 [3529.978643] remoteproc remoteproc 0: stopped remote processor m4

4 [1]+ Done cat /dev/ttyRPMSG0

Listing 8.7: Linux Console Messages

8.4.3 OpenAMP_raw

1. The demo starts the Cortex-M4 processor and initializes the OpenAMP Middleware.

2. The CM4 creates an rpmsg endpoint and waits for messages from Cortex-A7 Master Core.

3. When the CM4 receives a message on the rpmsg endpoint, it sends the message back to the CA7:

a) 99 "hello world!" messages are exchanged between the CA7 and CM4

b) 1 �nal "goodbye!" message is sent from the CM4 to the CA7.

Steps to start the demo:

emSBC-Argon DebianManual 26/32 Rev. 1 / 11.05.2021

1 root@device# cd /opt/openamp -demo/OpenAMP_raw

2 root@device :/opt/openamp -demo/OpenAMP_raw#./fw_cortex_m4.sh start

1 SAMPLE_RPMSG_CLIENT module loaded

2 [45.148027] remoteproc remoteproc 0: powering up m4

3 [45.152045] remoteproc remoteproc 0: Booting fw image OpenAMP_raw.elf , size

216920

4 [45.159839] remoteproc 0#vdev0buffer: assigned reserved memory node vdev0

buffer@ 10044000

5 [45.167646] virtio_rpmsg_bus virtio 0: creating channel rpmsg -client -sample

addr 0x0

6 [45.173043] virtio_rpmsg_bus virtio 0: rpmsg host is online

7 [45.183924] remoteproc 0#vdev0buffer: registered virtio0 (type 7)

8 [45.188991] remoteproc remoteproc 0: remote processor m4 is now up

9 [45.196746] rpmsg_client_sample virtio 0.rpmsg -client -sample .-1.0: new

channel: 0x400 -> 0x0!

10 [45.203906] rpmsg_client_sample virtio 0.rpmsg -client -sample .-1.0: incoming

msg 1 (src: 0x0)

11 [45.215775] rpmsg_client_sample virtio 0.rpmsg -client -sample .-1.0: incoming

msg 2 (src: 0x0)

12

13

14 [46.026582] rpmsg_client_sample virtio 0.rpmsg -client -sample .-1.0: incoming

msg 98 (src: 0x0)

15 [46.035040] rpmsg_client_sample virtio 0.rpmsg -client -sample .-1.0: incoming

msg 99 (src: 0x0)

16 [46.052006] rpmsg_client_sample virtio 0.rpmsg -client -sample .-1.0: goodbye!

Listing 8.8: Linux Console Messages

Steps to stop the demo:

1 root@device :/opt/openamp -demo/OpenAMP_raw# ./fw_cortex_m4.sh stop

1 Module unloaded

2 [229.057270] rpmsg_client_sample virtio 0.rpmsg -client -sample .-1.0: rpmsg

sample client driver is removed

3 [229.574488] remoteproc remoteproc 0: warning: remote FW shutdown without ack

4 [229.580064] remoteproc remoteproc 0: stopped remote processor m4

Listing 8.9: Linux Console Messages

8.5 Custom application autostart

The Debian based BSP uses systemd for managing system tasks, providing nice features for embedded devices, like, for

example limiting memory usage for a service, interfacing with kernel Control-groups (CGROUPS). Here we describe

shortly how to set-up your own Job and enable it in the system.

emSBC-Argon DebianManual 27/32 Rev. 1 / 11.05.2021

For this examplewe assume that you have stored your applicationwith the name myapplication in the folder /usr/bin.

First create a unit �le to de�ne the systemd service. This �le has to be stored in the directory /lib/systemd/system/.

In this example we name it appname.service

1 [Unit]

2 Description=Start myapplication systemd service.

3

4 [Service]

5 Type=simple

6 ExecStart =/usr/bin/myapplication

7

8 [Install]

9 WantedBy=multi -user.target

Listing 8.10: Unit �le for the custom service appname.service

This de�nes a simple service. The line ExecStart tells the command which is used to start the application. Now copy

the unit �le to the location /etc/systemd/system and give it the correct permissions:

1 root@device# sudo cp -a /lib/systemd/system/appname.service /etc/systemd/system

2 root@device# sudo chmod 644 /etc/systemd/system/appname.service

Now we can test the start by using the commands

1 root@device# sudo systemctl start appname

2 root@device# sudo systemctl status appname

If there is no error reported and the status output tells that the appname.service is active (running) everything is ok.

Now we can enable the service so that it runs automatically at boot time.

1 root@device# sudo systemctl enable appname

8.6 Peripherals access

One of the most common tasks is to access certain peripherals. The following sections show you how to use the

corresponding functions. Please note that information from device speci�c appendix (page 32�.) is required.

8.6.1 GPIOs

GPIO access in Linux is possible via the sysfs �le system if you know the Linux GPIO number.

1 root@device# echo 35 > /sys/class/gpio/export

emSBC-Argon DebianManual 28/32 Rev. 1 / 11.05.2021

Afterwards it has created it’s own subfolder in /sys/class/gpio/, if it is not currently used by any driver. This folder

contains the �les ‘active_low’, ‘direction’, ‘edge’ and ‘value’. The �le ‘active_low’ can be set to ‘one’ if the values written or

read from ‘value’ ought to be inverted in the manner of a low-active GPIO. But beforehand, the GPIO direction has to be

con�gured via the corresponding ‘direction �le’. It accepts the values out and in. The following example con�gures the

GPIO as output and sets it to an active state (high).

1 root@device# echo "out" > /sys/class/gpio/gpio 35/ direction

2 root@device# echo 1 > /sys/class/gpio/gpio 35/ value

The ‘edge’ �le can be used to con�gure interrupt-a�nity to the GPIO using the poll syscall. However, this document

does not cover this in detail.

� Info

The gpio access using sysfs is deprecated now. In this case is recommended to use libgpiod when you writting a

new application. Further information about libgpiod can be found under https://git.kernel.org/pub/scm/

libs/libgpiod/libgpiod.git/about/

8.7 Source code acquisition

The source code for U-Boot can be obtained from GitHub:

1 root@device# git clone https :// github.com/emtrion/stm32mp1_u-boot.git -b argon_

v2020.01

Listing 8.11: Get the U-Boot source code

The source code for the Linux Kernel can also be obtained from GitHub:

1 root@device# git clone https :// github.com/emtrion/stm32mp1_linux.git -b argon_v

5.4

Listing 8.12: Get the Linux Kernel source code

emSBC-Argon DebianManual 29/32 Rev. 1 / 11.05.2021

https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/about/
https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/about/

9 Getting help

9.1 Known Issues

Maybe, there are known issues related to the BSP or Developer Kit. These known issues are documented in our support

center (see chapter 9.2)

9.2 Support center

You can access emtrion’s support center via the following link: https://support.emtrion.de

The support pages have two main sections: hardware and software. On the hardware pages you can �nd hardware and

optionally production related information. On the software pages you can �nd BSP related information, known issues,

frequently asked questions (FAQ) and information regarding new releases.

9.3 Debian documentation and community

Since Debian is a long established Linux distribution you �nd good and detailed documentation on the internet. To

learn more about Debian, please visit the Debian wiki page via https://wiki.debian.org

Here you can �nd an online Debian book containing extensive documentation:

http://debian-handbook.info/

9.4 Commercial support

If you require speci�c support on currently not supported features of emtrion’s products, please contact our sales

department for an individual quotation.

emtrion GmbH

Am Hasenbiel 6

D-76297 Stutensee

Tel. +49 7244 62694 0

Email (sales department): sales@emtrion.de

emSBC-Argon DebianManual 30/32 Rev. 1 / 11.05.2021

https://support.emtrion.de
https://wiki.debian.org
http://debian-handbook.info/
mailto:sales@emtrion.de

9.5 Technical support

If you encounter technical di�culties regarding the o�cially supported features of our BSP, please send a message to

our support team covering the information below. The more detailed your description is, the quicker you receive our

feedback, as we can directly forward your request to the correct person internally.

Technical Support: support@emtrion.de

Please include the following Information:

• BSP-variant and version: (e.g. Debian 10, Buster)

• Kernel-version: (e.g. 5.4.76)

• Baseboard and module type (e.g. emSBC-Argon, emSTAMP-Argon)

• Serial number of the a�ected module (e.g. 10025458)

• Linux distribution on your development PC (e.g. Debian 10)

emSBC-Argon DebianManual 31/32 Rev. 1 / 11.05.2021

mailto:support@emtrion.de

10 Appendix

10.1 emSTAMP-series

10.1.1 emSTAMP-Argon

10.1.1.1 on emSBC-Argon

The emSBC-Argon baseboard o�ers several expansion connectors serving PIN-outs from the STM32MP157CAC core-

module. The following table gives an overview of their default functions.

Connector Pin STM32MP157CAC GPIO Alternate function

J10 16 GPIO_00

15 GPIO_01 ADC1_INP6, ADC1_INN2

88 GPIO_02

8 GPIO_03 TIM8_CH2N

9 GPIO_04 TIM4_CH2

10 GPIO_05 TIM5_CH2

11 GPIO_06 TIM1_CH1

12 GPIO_07 TIM1_CH1N

Table 10.2: GPIO translation emSTAMP-Argon on emSBC-Argon

emSBC-Argon DebianManual 32/32 Rev. 1 / 11.05.2021

	Terms and definitions
	Introduction
	Requirements for the development PC
	Requirement on the development PC for network boot of the target

	Device connection
	Serial console preparations
	Device boot
	Default login credentials

	Network setup
	Using DHCP
	Using a fixed IPv4 address
	Network configuration check

	Booting Linux
	Boot configuration
	Stand alone boot
	Network remote boot

	Device software components
	Bootloader (U-Boot)
	Basic U-Boot operation
	Boot architecture
	Network configuration
	Network setup using DHCP
	Network setup with static addresses
	Network troubleshooting in U-Boot

	Predefined macros
	Macros intended to update the complete system

	U-Boot recompilation

	emPURS
	emPURS for production purposes

	Restoring the Root Filesystem
	Linux kernel
	Kernel-package recompilation

	Debian BSP
	Board support packages
	emboot

	Development configuration

	Custom Debian BSP creation
	Embedded Linux build system
	Setup elbe on the host
	Virtual build machine preparation
	Custom Debian BSP creation

	Local repository server
	Apache installation and configuration
	Basic repository configuration
	Managing Debian packages

	Common tasks
	Find packages
	Add or remove packages
	Network configuration
	OpenAMP demo
	Prerequisite
	Adding Debian Package

	OpenAMP_FreeRTOS_echo
	OpenAMP_raw

	Custom application autostart
	Peripherals access
	GPIOs

	Source code acquisition

	Getting help
	Known Issues
	Support center
	Debian documentation and community
	Commercial support
	Technical support

	Appendix
	emSTAMP-series
	emSTAMP-Argon
	on emSBC-Argon

