

emSTAMP Neon Zephyr Developer Kit

Software Manual
Rev01 / 26.10.2023

emtrion GmbH

emSTAMP Neon Zephyr Developer Kit (Rev01) 2/17

© Copyright 2023 emtrion GmbH

All rights reserved. This documentation may not be photocopied or recorded on any

electronic media without written approval. The information contained in this documentation

is subject to change without prior notice. We assume no liability for erroneous information or

its consequences. Trademarks used by other companies refer exclusively to the products of

those companies.

Revision: 01/ 26.10.2023

Rev Date/Signature Changes

1 26.10.2023/Pa Initial release

emSTAMP Neon Zephyr Developer Kit (Rev01) 3/17

Table of contents

Revision: 01/ 26.10.2023 .. 2

1 Introduction .. 4

1.1 Zephyr Project ... 4

1.2 Features .. 4

2 Hardware requirement ... 5

2.1 JTAG debugger/programmer .. 5

3 Workstation Software installation .. 6

3.1 Zephyr Project Development Environment .. 6

3.2 Zephyr Project for Development .. 8

3.3 STM32 ST-LINK utility ... 9

4 Testing your in-circuit Debugger/programmer on your emStamp-Neon 9

5 Information on the downloaded Zephyr repository folder .. 11

6 Important steps before starting development with Neon board and Zephyr Project 11

7 Working with Zephyr Project to build and flash your application ... 12

8 Working with Zephyr Project to develop your application .. 13

9 Working with Zephyr Project to develop a device tree ... 15

emSTAMP Neon Zephyr Developer Kit (Rev01) 4/17

1 Introduction

Welcome to emSTAMP-Neon developer kit documentation. This manual will give you a

startup software guideline for our developer kit. It will describe how to use the different free

software to program your developer kit.

It is assumed that users of emtrion developer kits are already familiar with software

development. Programming knowledge is out of the scope of this document. emtrion will

gladly assist you in acquiring this knowledge. If you are interested in training courses or

getting support, please contact the emtrion sales department.

The examples in this manual are demonstrated on specific hardware but if not mentioned

otherwise they all work on all supported emtrion devices.

Please refer to the “Hardware Description” of emSTAMP-Neon available on the emtrion

support website (http://support.emtrion.de) for more detailed information on the capability

of the product.

1.1 Zephyr Project

Zephyr is a real-time operating system (RTOS) designed specifically for resource-constrained

embedded systems and IoT devices. It focuses on providing a lightweight and efficient kernel

for small-scale, low-power devices.

Zephyr is designed to be extremely lightweight and can run on devices with minimal memory

and storage requirements. It is well-suited for resource-constrained embedded systems.

Zephyr uses a microkernel architecture, which means only essential services are placed in

kernel space and functionality is placed in user space. Whereas Linux uses a monolithic kernel

architecture where most of OS functionality is placed in kernel space. This way zephyr

improves stability and security.

Zephyr is a real-time operating system, which is specifically designed for real-time tasks,

whereas Linux is not a real-time OS.

1.2 Features

1) Extensive suite of Kernel services

Zephyr offers familiar services for development:

• Multithreading services

• Interrupt services

• Memory allocation services

• Inter-thread synchronization services

• Inter-thread data passing

• Power management services

http://support.emtrion.de/

emSTAMP Neon Zephyr Developer Kit (Rev01) 5/17

2) Multiple scheduling algorithms

Zephyr provides a set of thread scheduling choices: for example, cooperative and

primitive scheduling, Earliest deadline first, Time slicing, Multiple queueing strategy

etc.

3) Highly configurable / modular for flexibility

4) Cross Architecture

5) Memory Protection

6) Compile time resource definition

7) Optimized Device Driver Model

8) Device tree support

9) Bluetooth low energy 5.0 support

10) User friendly

11) Linux, Mac and Windows development

12) Native POSIX support

2 Hardware requirement

2.1 JTAG debugger/programmer

In this manual, the in-circuit debugger/programmer used is the ST-LINK/V2

(https://www.st.com/en/development-tools/st-link-v2.html).

https://www.st.com/en/development-tools/st-link-v2.html

emSTAMP Neon Zephyr Developer Kit (Rev01) 6/17

3 Workstation Software installation

Before starting you need to prepare your workstation. To build an image that runs on the

target, you need to install the following set of free software available online on the Zephyr

Project official site (https:/zephyrproject.org/).

3.1 Zephyr Project Development Environment

Zephyr Project is a small real-time operating system (RTOS) for connected, resource-

constrained and embedded devices supporting multiple architectures and was released

under the Apache License 2.0. Zephyr includes a kernel, and all components and libraries,

device drivers, protocol stacks, file systems, and firmware updates, needed to develop full

application software. To set up command line Zephyr development environment on Ubuntu.

Step 1: Select and update the OS

Step 2: Install dependencies

Minimum required version for dependencies

1. If Ubuntu version is older than 22.04, then this step is important to add an extra

repository

2. Use apt to install dependencies

Tool Min. Version

CMake 3.20.5

Python 3.8

Device tree compiler 1.4.6

sudo apt update

sudo apt upgrade

wget https://apt.kitware.com/kitware-archive.sh

sudo bash kitware-archive.sh

sudo apt install

https://zephyrproject.org/

emSTAMP Neon Zephyr Developer Kit (Rev01) 7/17

3. Verify the versions of the main dependencies installed in the system

Step 3: Get zephyr and install python dependencies

1. Use apt to install Python venv package

2. Create new virtual environment:

3. Activate the virtual environment:

4. Install west:

5. Get the zephyr source code:

6. Export a Zephyr CMake package:

cmake --version

python3 --version

dtc --version

sudo apt install python3-venv

python3 -m venv ~/zephyrproject/.venv

source ~/zephyrproject/.venv/bin/activate

pip install west

west init ~/zephyrproject

cd ~/zephyrproject

west update

west zephyr-export

emSTAMP Neon Zephyr Developer Kit (Rev01) 8/17

7. Install zephyr’s requirements.txt file with pip:

Step 4: Install Zephyr SDK

1. Download and verify the zephyr SDK bundle

2. Extract the zephyr SDK bundle

3. Run the Zephyr SDK bundle setup script

4. Install udev rules

To set up Zephyr development environment for Windows or Mac please follow the below link

(https://docs.zephyrproject.org/latest/develop/getting_started/index.html).

→This way zephyr development environment is set up.

pip install -r ~/zephyrproject/zephyr/scripts/requirements.txt

cd ~

wget https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.16.1/zephyr-sdk-

0.16.1_linux-x86_64.tar.xz

wget -O - https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.16.1/sha256.sum

| shasum --check --ignore-missing

tar xvf zephyr-sdk-0.16.1_linux-x86_64.tar.xz

cd zephyr-sdk-0.16.1

./setup.sh

sudo cp ~/zephyr-sdk-0.16.1/sysroots/x86_64-pokysdk-linux/usr/share/openocd/contrib/60-

openocd.rules /etc/udev/rules.d

sudo udevadm control --reload

https://docs.zephyrproject.org/latest/develop/getting_started/index.html

emSTAMP Neon Zephyr Developer Kit (Rev01) 9/17

3.2 Zephyr Project for Development

There are some key aspects of using zephyr for development. It provides kernel and RTOS

features (threads, timers, etc.). It supports a wide range of architectures and boards. It allows

you to develop applications using C or C++ programming languages. It places a strong

emphasis on security and safety.

It integrates well with popular IDEs such as VS code, Eclipse, and others.

3.3 STM32 ST-LINK utility

STM32 ST-LINK Utility is a full-featured software interface for programming STM32

microcontrollers (https://www.st.com/en/development-tools/stsw-link004.html)

The tool offers a wide range of features to program STM32 internal memories (Flash, RAM,

OTP and others), and external memories to verify the programming content (checksum, verify

during and after programming, compare with file) and to automate STM32

programming.STM32 ST-LINK Utility is delivered as a graphical user interface (GUI) with a

command line interface (CLI).

4 Testing your in-circuit Debugger/programmer on your emStamp-

Neon

It is strongly advised to test the communication between your workstation and your target

using the ST-LINK utility tool before starting any debugging and/or programming with

SW4STM32.

The output of a good communication should look like this:

https://www.st.com/en/development-tools/stsw-link004.html

emSTAMP Neon Zephyr Developer Kit (Rev01) 10/17

emSTAMP Neon Zephyr Developer Kit (Rev01) 11/17

5 Information on the downloaded Zephyr repository folder

➔ Once your Zephyr environment is set up, now you are all set for building and flashing

the project but before that firstly, we need information about the downloaded Zephyr

repository folder what does it contain and what happens if we make changes.

➔ Zephyr project repository folder contains 4 folders bootloader, modules, tools, and

zephyr.

mcuboot: It contains MCUboot Project, which is an open-source bootloader for controllers. It

provides a secure and flexible way to update the firmware on microcontrollers.

zephyr: It is the heart of the Zephyr project. It contains RTOA source code, configurations and

associated files. In this folder, Zephyr RTOS itself is maintained and developed. It includes

kernel, device drivers, libraries and components that make up Zephyr RTOS. Developers

working on the Zephyr project interact with this folder to configure and build their applications.

tools: This folder contains various tools and scripts that are useful for working with the Zephyr

Project. It houses a collection of scripts and utilities that help developers with tasks like building

Zephyr applications, managing dependencies, and performing various development tasks. For

example, it includes the Zephyr Software Development Kit (SDK) and tools for flashing firmware

onto target devices.

modules: It contains additional libraries and modules that are not part of the core Zephyr RTOS

code base. These additional modules can be used to extend the functionality of your Zephyr-

based application. They include components like networking stacks, Bluetooth profiles, and

various middleware libraries. Developers can choose to include these modules in their projects

as needed.

6 Important steps before starting development with Neon board

and Zephyr Project

Once the Zephyr environment is set up, now Zephyr repository folder contains only files that

come with the Zephyr Project. It does not contain supportive or working files for the neon

board.

➔ To work with the Neon board, we have to add necessary device tree files of the neon

board in the Zephyr repository.

➔ You can download the necessary device tree files of the Neon board from the emtrion

site.

➔ After downloading that folder, you can copy the whole folder named

“stm32f769i_neon” and paste it at the given path.

Path for pasting the folder: zephyrproject/zephyr/boards/arm/

emSTAMP Neon Zephyr Developer Kit (Rev01) 12/17

➔ After pasting it at the given path location now we are all set to do development with

Neon board.

➔ To check that it's working or not you can try out the blinky project example on the

Neon board.

Note: If you are trying out applications that gives serial output do not forget to

connect the UART connector with Neon board.

7 Working with Zephyr Project to build and flash your application

Emtrion is providing the configuration file that gives you the possibility to load the entire pin

muxing, clock configuration and middleware of the MCU STM32F479NIHx used in the

emStamp-Neon. Once you have done everything according to the getting started guide you

are all set to develop and load your application on your neon board.

Step 1: To start working open the terminal and check if the virtual environment is activated

or not. if not then activate it. Command to activate the virtual environment:

Step 2: Go to the Zephyr directory:

Step 3: You can build any application of your choice but here we are taking the example of a

blinky application. command to build an application:

→Once you build the project, you will see one folder created with “build” name in the zephyr

folder of the zephyr project repository. The contents of the build folder may vary depending

on specific project configuration, target hardware, and build options. Build folder contains

folders like app, CMakeFiles, Kconfig, modules, etc., and files like CMakeCache.txt, build.ninja

…etc.

→If you want to work with another controller then “stm32f769i_neon” must be replaced

with the other controller’s device tree file name. If you want to work with other applications

than blinky application then the path will be changed.

source ~/zephyrproject/.venv/bin/activate

cd ~/zephyrproject/zephyr

west build -p always -b stm32f769i_neon samples/basic/blinky

emSTAMP Neon Zephyr Developer Kit (Rev01) 13/17

Step 4: Once it's built successfully then flash it to board. command to flash application:

Now your blinky application is directly flashed to the neon board and you can see that red

LED on the neon board started blinking.

8 Working with Zephyr Project to develop your application

There are three types of Zephyr applications based on their location.

1. Repository application: located in Zephyr source code repository

2. Workspace application: located in the workspace outside the Zephyr repository

3. Freestanding application: located outside of workspace

There are many sample applications provided by the zephyr.

Here is the path for sample applications: ~/zephyrproject/zephyr/samples/

Creating new Application:

Step 1: Create a basic directory

Step 2: Create your source code files.

Step 3: Place your application source code in a subdirectory named src.

Step 4: Create a file named CMakeLists.txt in the app directory with the following contents.

west flash

mkdir app

cd app

mkdir src

emSTAMP Neon Zephyr Developer Kit (Rev01) 14/17

Note:

• The cmake_minimum_required() call is required by CMake. CMake will error out if its

version is older than either the version in your CMakeLists.txt or the version number in

the Zephyr package.

• find_package(Zephyr) pulls in the Zephyr build system, which creates a CMake target

named app.

• project(my_zephyr_app) defines your application’s CMake project.

• target_sources(app PRIVATE src/main.c) is to add your source file to the app target.

Step 5: Create at least one Kconfig fragment for your application (usually named prj.conf)

and set Kconfig option values needed by your application there. See Kconfig Configuration. If

no Kconfig options need to be set, create an empty file.

Step 6: Configure any device tree overlays needed by your application, usually in a file

named app.overlay.

Step 7: Set up any other files you may need and then your new application is created.

Here are the files given in a simple Zephyr application structure:

cmake_minimum_required(VERSION 3.20.0)

find_package(Zephyr)

project(my_zephyr_app)

target_sources(app PRIVATE src/main.c))

<app>

├── CMakeLists.txt

├── app.overlay

├── prj.conf

├── VERSION

└── src

 └── main.c

https://docs.zephyrproject.org/latest/develop/application/index.html#application-kconfig

emSTAMP Neon Zephyr Developer Kit (Rev01) 15/17

• CMakeLists.txt: This file tells the build system where to find the other application

files, and links the application directory with Zephyr’s CMake build system. This link

provides features supported by Zephyr’s build system, such as board-specific

configuration files, the ability to run and debug compiled binaries on real or emulated

hardware, and more.

• app.overlay: This is a device tree overlay file that specifies application-specific

changes that should be applied to the base device tree for any board you build for.

The purpose of device tree overlays is usually to configure something about the

hardware used by the application.

• prj.conf: This is a Kconfig fragment that specifies application-specific values for one

or more Kconfig options. These application settings are merged with other settings to

produce the final configuration. The purpose of Kconfig fragments is usually to

configure the software features used by the application.

• VERSION: A text file that contains several version information fields. These fields let

you manage the lifecycle of the application and automate providing the application

version when signing application images. (Not compulsory to have)

• main.c: A source code file. Applications typically contain source files written in C, C++,

or assembly language. The Zephyr convention is to place them in a subdirectory of

<app> named src.

These files are necessary for creating and modifying an application.

To create a new application or to modify it you can follow the instructions given on the

site(https://docs.zephyrproject.org/latest/develop/application/index.html)

9 Working with Zephyr Project to develop a device tree

For adding extra features to the controller board as well as to make changes inside the device

tree of the board.

here is path for device tree of neon board:

~/zephyrproject/zephyr/boards/arm/stm32f769i_neon/stm32f769i_neon.dts

Steps to develop the device tree:

1. Locate the Device Tree Files: typically located in ‘zephyr/dts/’ directory.

2. Choose the appropriate Device Tree File: According to hardware you’re using.

3. Edit the Device Tree File: Open .dts or .dtsi file and make your desired changes to it.

4. Device Tree Syntax: Familiarize yourself with device tree syntax and conventions in

the device tree. Otherwise, it may lead to errors.

5. Use Device Tree Overlays(optional)

6. Rebuild the Zephyr Application

https://docs.zephyrproject.org/latest/develop/application/index.html

emSTAMP Neon Zephyr Developer Kit (Rev01) 16/17

7. Flash and Test: Flash your updated firmware and test your changes.

8. Document your changes: It's necessary to document the device tree modifications to

ensure that others can understand your changes and facilitate troubleshooting.

Note: Please don’t make modification directly inside the device tree. It’s safe to create

separate overlay files and make changes.

Here to make changes in the device tree you must need inside knowledge of the neon board.

That’s why it's recommended to use the emSBC-Neon hardware

manual(https://www.emtrion.de/de/products/emsbc-neonm7-mit-st-stm32f769ni.html).

Set Devicetree Overlays

The CMake variable DTC_OVERLAY_FILE contains a space- or semicolon-separated list of

overlay files to use. If DTC_OVERLAY_FILE specifies multiple files, they are included in that

order by the C preprocessor. A file in a Zephyr module can be referred to by escaping the

Zephyr module dir variable like \${ZEPHYR_<module>_MODULE_DIR}/<path-to>/dts.overlay

when setting the DTC_OVERLAY_FILE variable.

You can set DTC_OVERLAY_FILE to contain exactly the files you want to use.

If you don’t set the DTC_OVERLAY_FILE then the build system will follow these steps, looking

for device tree overlay files:

1. If the file boards/<BOARD>.overlay exists, it will be used.

2. If the current board has multiple revisions and boards/<BOARD>_<revision>.overlay

exists, it will be used. This file is used in addition to the boards/<BOARD>.overlay if

both exist.

3. If one or more file exists, then build systems stop looking and uses those files.

4. Otherwise, if <BOARD>.overlay exists, then it will be used and the build system will

stop looking for more files.

5. Otherwise if app.overlay exists, it will be used.

Overlays can override the node properties in multiple ways. If your board contains this node:

https://www.emtrion.de/de/products/emsbc-neonm7-mit-st-stm32f769ni.html

emSTAMP Neon Zephyr Developer Kit (Rev01) 17/17

➔ These are the ways to override the current-speed value in an overlay:

➔ This way, an overlay has been created for making changes inside the device tree.

/ {

 soc {

 serial0: serial@40002000 {

 status = "okay";

 current-speed = <115200>;

 /* ... */

 };

 };

};

mk

/* Option 1 */

&serial0 {

 current-speed = <9600>;

};

/* Option 2 */

&{/soc/serial@40002000} {

 current-speed = <9600>;

};

