

Yocto DevKit for SBC-RZN1D
Documentation

Rev006 / 08.10.2021

emtrion GmbH

SBC-RZN1D (Rev006) 2/26

© Copyright 2018 emtrion GmbH

All rights reserved. This documentation may not be photocopied or recorded on any

electronic media without written approval. The information contained in this documentation

is subject to change without prior notice. We assume no liability for erroneous information or

its consequences. Trademarks used from other companies refer exclusively to the products of

those companies.

Revision: 006 / 08.10.2021

Rev Date/Signature Changes

001 Wi/04.06.2018 First release

002 Wi/06.08.2018 Minor changes in the bitbake process

003 Wi/23.04.2019 Rebranding changes

004 Ml/08.02.2021 Yocto: changed from morty to dunfell, supporting Init-Manager

systemd and sysvinit, changing layer structure, changed U-Boot

environment for cm3 support, removing VM due to license

issue, removing eclipse

005 Ml/23.04.2021 Extend the emtrion meta-layer supporting Preempt-RT,

supporting eeprom, emPURS: check for image file before

deleting the flash

006 Ml/08.10.2021 Changed Uboot command sequence in setting of the serverip

after executing of dhcp in any case

SBC-RZN1D (Rev006) 3/26

Inhaltsverzeichnis

1 INTRODUCTION ... 4

2 TERMS AND DEFINITIONS .. 5

3 SCOPE OF THE DELIVERY ... 7

4 HOST DEVELOPMENT MACHINE .. 8

4.1 CHOICE OF THE LINUX DISTRIBUTION ... 8

4.2 FURTHER REQUIREMENTS ... 8

4.2.1 Predefined directories .. 8

4.2.2 Getting the delivery .. 9

4.2.3 Serial port ... 9

4.2.4 NFS server ... 9

4.2.5 TFTP server .. 9

4.2.6 Serial terminal .. 9

4.2.7 Yocto Layer... 9

4.2.8 Installing the prebuilt target RFS for booting from NFS Server ... 9

4.2.9 Installing emtrion’s update mechanism emPURS ... 9

4.2.10 Miscellaneous .. 9

4.3 DEVICE START UP .. 10

4.4 DEVICE NETWORK SETUP ... 11

4.5 PREBUILT IMAGES AND INSTALLATIONS ... 13

4.5.1 Target Root Filesystems ... 13

4.5.2 SDK Root Filesystems ... 14

4.5.3 SDK-Installer... 14

5 THE META-LAYER FOR SBC-RZN1D ... 15

5.1 PREPARING THE ENVIRONMENT WITH OR WITHOUT RT SUPPORT ... 15

5.2 CREATING THE IMAGES .. 16

5.2.1 core-image-purs .. 16

5.2.2 emtrion-image-sbc-rzn1d(-systemd) ... 16

5.2.3 emtrion-image-sbc-rzn1d(-systemd)-sdk .. 16

5.2.4 SDK installer ... 17

5.2.5 Miscellaneous .. 17

5.3 OUTPUT FILES ... 17

5.3.1 Root Filesystem ... 18

5.3.2 boot directory .. 18

6 U-BOOT BOOTLOADER .. 19

6.1 BASIC U-BOOT OPERATION ... 19

6.2 THE UBOOT_SCRIPT... 19

6.2.1 Implemented commands ... 20

6.3 USING U-BOOT TO CHANGE BOOT DEVICE OR UPDATE PARTS OF THE SYSTEM 21

6.3.1 Boot setup and updating the RFS .. 21

6.3.2 Updating the RFS (using NFS) ... 22

6.3.3 Updating of U-Boot bootloader (using TFTP) .. 22

6.3.4 Updating of U-Boot SPL (using TFTP) .. 23

SBC-RZN1D (Rev006) 4/26

6.3.5 Booting .. 23

6.3.6 Boot from on-board flash ... 23

6.3.7 Boot via network using a NFS share ..24

7 SDK .. 25

7.1 INSTALLING THE SDK .. 25

7.1.1 Setting up the SDK environment ... 25

7.1.2 SDK Root Filesystem ... 26

8 FURTHER INFORMATION .. 26

8.1 ONLINE RESOURCES .. 26

8.2 WE SUPPORT YOU .. 26

1 Introduction

Emtrion produces and offers various boards and modules which are available at

https://support.emtrion.de/en/home.htl. One of the exciting products in Emtrion`s product

range is the single board named SBC-RZN1D. This manual provides instructions and pointers

for efficient use of Yocto Project development with the hardware.

The SBC-RZN1D is based on the processor RZN1D from Renesas. The processor consists of a

Dual Cortex-A7(500MHz) and a Cortex-M3(125MHz). The processor implements some special

features for using in industrial communication such as PROFINET, EtherCAT and network

switch.

The Yocto version for the product is Yocto dunfell (3.1.2). Due to Renesas didn’t just yet

provide a newer Yocto layer for the RZN1D than Yocto Rocko, emtrion does now provide one

for Yocto dunfell.

The BSP contains a Linux kernel based on version 4.9.0 and U-Boot Version 2017.01 provided

by Renesas. Both are optimized and adapted by emtrion to perfectly fit the SBC-RZN1D.

From rev 005 at this document, the BSP also supports Preempt-RT.

The important version information for the various tools and packages are listed below.

Item Version information

linux distribution

Host

Debian Buster

meta-emtrion-rzn1 tag vSBC-RZN1D -1.1 based on branch dunfell

linux target v4.9.0, rzn1-stable, tag vSBC-RZN1D-1.1 based on branch sbc-rzn1d

linux-rt target V4.9.201-rt134, tag vSBC-RZN1D-rt-1.0 based on branch sbc-rzn1d-

rt

u-boot target 2017.01 sbc-rzn1d v01.000, rzn1-stable

Yocto dunfell v3.1.2

https://support.emtrion.de/en/home.htl

SBC-RZN1D (Rev006) 5/26

bitbake v1.46.0

gcc v9.3.0

openssh v8.2

busybox v1.31.1

initscripts v1.0

This manual describes the contents of the developer kit and the general information as well

as instructions for the user.

It is assumed that users of emtrion Linux developer kits are already familiar with U-boot,

Linux, Yocto and creating and debugging applications. General Linux and programming

knowledge are out of the scope of this document. emtrion is happy to assist you in acquiring

this knowledge. If you are interested in training courses or getting support, please contact

the emtrion sales department.

The important resources that can be accessed for further in-depth knowledge are as follows:

1. https://docs.yoctoproject.org/

2. https://docs.yoctoproject.org/releases.html#dunfell-release-series

3. https://www.yoctoproject.org/docs/3.1.2/ref-manual/ref-manual.html#ref-manual-

system-requirements

4. Yocto Project Application Development and the Extensible Software Development Kit

(eSDK)

5. Yocto repos.: https://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/?h=dunfell

6. Kernel repos.: https://github.com/renesas-rz/rzn1_linux/tree/rzn1-stable

7. U-boot repos.: https://github.com/renesas-rz/rzn1_u-boot/tree/rzn1-stable

2 Terms and Definitions

Term Definition

Target Board SBC-RZN1D

Host Workstation, Developer PC

Toolchain Compiler, Linker, etc.

RFS Root file system, contains the basic operating system

Console Text terminal interface for Linux

NFS Network File System, which can share directories over

network

NFS_SHARE Location that is exported by the NFS for the purpose of

updating and booting by using NFS

U-Boot Bootloader, hardware initialization, updating images, starting

OS

YP Yocto Project

https://docs.yoctoproject.org/
https://docs.yoctoproject.org/releases.html#dunfell-release-series
https://www.yoctoproject.org/docs/3.1.2/ref-manual/ref-manual.html#ref-manual-system-requirements
https://www.yoctoproject.org/docs/3.1.2/ref-manual/ref-manual.html#ref-manual-system-requirements
https://www.yoctoproject.org/docs/3.1.2/sdk-manual/sdk-manual.html
https://www.yoctoproject.org/docs/3.1.2/sdk-manual/sdk-manual.html
https://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/?h=dunfell
https://github.com/renesas-rz/rzn1_linux/tree/rzn1-stable
https://github.com/renesas-rz/rzn1_u-boot/tree/rzn1-stable

SBC-RZN1D (Rev006) 6/26

INST_DIR Directory where Yocto and the meta-layers are installed

MACHINE Specifies the target device for which the image is built. The

variable is named sbc-rzn1d for this kit

BUILD_DIR Machine dependent build directory

BSP Board Support Package

SDK Software Development Kit

SBC-RZN1D (Rev006) 7/26

3 Scope of the delivery

Other than before, this kit doesn’t come with a prepared Virtual Machine. License issues are

the reasons.

Subsequently, emtrion provides the corresponding software and prebuilt binaries via cloud.

Buyers will get a cloud link. This link points to a directory which includes the gz-Archiv sbc-

rzn1d_dunfell.tar.gz, including a defined directory structure as below. The gz-Archic

contains all the images with and none RT support.

• meta-layer

o contains the Yocto layer meta-emtrion-rzn1 for producing the various

images

• RFS

o contains the prebuilt RFS images with systemd and sysvinit support

▪ emtrion-image-sbc-rzn1d.tar.bz2

▪ emtrion-image-sbc-rzn1d-sdk.tar.bz2

▪ emtrion-image-sbc-rzn1d-systemd.tar.bz2

▪ emtrion-image-sbc-rzn1d-systemd-sdk.tar.bz2

▪ emtrion-image-sbc-rzn1d-rt.tar.bz2

▪ emtrion-image-sbc-rzn1d-sdk-rt.tar.bz2

▪ emtrion-image-sbc-rzn1d-systemd-rt.tar.bz2

▪ emtrion-image-sbc-rzn1d-systemd-sdk-rt.tar.bz2

• SDKs

o contains the SDK installer to make application development useable outside

the yocto build system. You will find the installers in the corresponding

directories, each for none-RT and RT.

▪ none-RT

• poky-glibc-x86_64-emtrion-image-sbc-rzn1d-sdk-armv7vet2hf-

vfpv4d16-sbc-rzn1d-toolchain-3.1.2.sh

• poky-glibc-x86_64-emtrion-image-sbc-rzn1d-systemd-sdk-

armv7vet2hf-vfpv4d16-sbc-rzn1d-toolchain-3.1.2.sh

▪ RT

• poky-glibc-x86_64-emtrion-image-sbc-rzn1d-sdk-armv7vet2hf-

vfpv4d16-sbc-rzn1d-toolchain-3.1.2.sh

• poky-glibc-x86_64-emtrion-image-sbc-rzn1d-systemd-sdk-

armv7vet2hf-vfpv4d16-sbc-rzn1d-toolchain-3.1.2.sh

• restore

o contains the files of emtrion’s update mechanism emPURS for updating the

target’s RFS

SBC-RZN1D (Rev006) 8/26

▪ zImage

▪ sbc-rzn1d-rdsk.dtb

▪ uboot_script

▪ emPURS_plat

▪ initramfs-sbc-rzn1d.cpio.gz

• u-boot

o contains the prebuilt binaries U-Boot and SPL

▪ u-boot.img

▪ spl-rel.spkg

4 Host Development Machine

Due to not any prepared VM is available, you have to setup your own linux distribution

before working with the kit. However, setting up the linux distribution is not so much work.

Below is a short guideline.

4.1 Choice of the linux distribution

The Yocto Project supports several linux distributions and what are the requirements. For

Yocto dunfell, please look at https://www.yoctoproject.org/docs/3.1.2/ref-manual/ref-

manual.html#ref-manual-system-requirements to meet the requirements. Please note, the

linux distribution Debian Buster is used by this kit and so we prefer this for your system too.

4.2 Further requirements

4.2.1 Predefined directories

This document references to some predefined directories. Following this document we

recommend you to provide this predefined directories.

Placeholder Path Remark

HOME_DIR /home/hico home directory of user hico(to replace it with

the corresponding home directory on your

system)

DWL_DIR <HOME_DIR>/Downloads the users download directory

NFS_SHARE <HOME_DIR>/nfs location exported by the NFS

NFS_ROOTFS <NFS_SHARE>/rootfs nfs share for booting the RFS by using NFS

NFS_RESTORE <NFS_SHARE>/restore location to put the emPURS files for updating

the onboard flashes

SDK_DIR <NFS_SHARE>/sdk install directory for the SDK

INST_DIR <HOME_DIR>/yocto/build install directory where Yocto and all the meta-

layers will be stored to

BUILD_DIR <INST_DIR>/builddir build directory of the build system.

TFTP_DIR /srv/tftp used by the TFTP server for exporting files

https://www.yoctoproject.org/docs/3.1.2/ref-manual/ref-manual.html#ref-manual-system-requirements
https://www.yoctoproject.org/docs/3.1.2/ref-manual/ref-manual.html#ref-manual-system-requirements

SBC-RZN1D (Rev006) 9/26

4.2.2 Getting the delivery

Download the gz-Archiv sbc-rzn1d_dunfell.tar.gz from the cloud and save it to the folder

<DWL_DIR>. Then decompress it in this folder by

tar xf sbc-rzn1d_dunfell.tar.gz

4.2.3 Serial port

A USB serial converter appearing at /dev/ttyUSBn

4.2.4 NFS server

Setting up a NFS server and export the <NFS_SHARE>. This can be different form the linux

distribution. Be sure to make this work correct, please inform yourself how this work has to

be done.

The entry in /etc/exports look like as follows

<NFS_SHARE> *(rw,nohide,insecure,no_subtree_check,async,no_root_squash)

4.2.5 TFTP server

We assume the tftp directory at <TFTP_DIR>

4.2.6 Serial terminal

We assume the terminal program picocom for connecting to the target

4.2.7 Yocto Layer

Create the directory <INST_DIR> and install the Yocto Layer meta-emtrion-rzn1 from

<DWL_DIR> to it.

4.2.8 Installing the prebuilt target RFS for booting from NFS Server

Create the directory <NFS_ROOTFS> and decompress the interested target RFS with or none

RT, depending on the image name, emtrion-image-sbc-rzn1d(-rt).tar.bz2, from <DWL_DIR>

to it.

tar xf <DWL_DIR>/RFS/emtrion-image-sbc-rzn1d(-rt).tar.bz2 –C <NFS_ROOTFS>

4.2.9 Installing emtrion’s update mechanism emPURS

Create the directory <NFS_RESTORE> and copy the emPURS files from <DWL_DIR> to it.

Then create the subdirectory “images” in <NFS_RESTORE>.

cp <DWL_DIR>/restore/* <NFS_RESTORE>/

mkdir <NFS_RESTORE>/images

4.2.10 Miscellaneous

Previous delivered boards that containing an old U-Boot version has to be updated first.

SBC-RZN1D (Rev006) 10/26

To find out the version of U-Boot, please power on the SBC-RZN1D and stop booting by

pressing any key. Then enter the command

• printenv ver

If the version does not start with the string “U-Boot 2017.01 sbc-rzn1d v…” it is an old one.

In this case you have to update the SPL, U-Boot and the target’s RFS first. This is described

here 6.3.1.1

4.3 Device Start Up

Connect the developer kit to the serial port attached to your system and to your network.

Open a console in the linux and open a serial terminal by entering:

 sudo picocom -b 115200 /dev/ttySx

ttySx has to be replaced with the device assigned to the connected serial port e.g. ttyS1. In

the case of using an USB serial adapter replace it by the corresponding ttyUSBn.

You may now power on the developer kit or enter the command res. You should see it

booting U-Boot and Linux from Flash.

Figure 1: Serial terminal showing U-Boot prompt

SBC-RZN1D (Rev006) 11/26

After the developer kit booted you are prompted for login:

• user: root

• password: no password set

4.4 Device Network Setup

Per default the developer kit is setup to use a DHCP server. This is configurable by a

bootloader environment variable “ip-method”. This variable can have the values “dhcp” or

“static”.

You can check if there is a valid IP address with the command “ifconfig” or “ip addr show

eth0”.

Figure 2: ifconfig output

If the setup is not correct you have to do it manually. Please check the description of the

bootloader configuration on how to set up the variable “ip-method”.

The device is supporting a second network interface eth1. You can show it by the command

ifconfig -a.

SBC-RZN1D (Rev006) 12/26

Figure 3: ifconfig -a output

If the interface eth1 connected to a network providing a dhcp, you can request an IP address

by the command dhclient eth1.

SBC-RZN1D (Rev006) 13/26

Figure 4: ifconfig -a after dhclient eth1

4.5 Prebuilt images and installations

As mentioned before, the kit is provided by various prebuilt binaries for downloading by a

cloud link.

The various binaries are assigned at specific subdirectories.

There are RFS images with sysvinit and systemd support as well with SDK extensions, each for

none RT and RT. All this information is reflected by the name of the corresponding image.

Other than in case of systemd, sysvinit has not be inserted in the image name.

In order to create a new root filesystem yourself, please follow the steps described in chapter

5.

4.5.1 Target Root Filesystems

The target root filesystems for the SBC-RZN1D are located in RFS.

RFS

├── emtrion-image-sbc-rzn1d-systemd.tar.bz2

├── emtrion-image-sbc-rzn1d-systemd-rt.tar.bz2

SBC-RZN1D (Rev006) 14/26

├── emtrion-image-sbc-rzn1d.tar.bz2

└── emtrion-image-sbc-rzn1d-rt.tar.bz2

For booting from NFS you can decompress the interested RFS image to <NFS_ROOTFS>

tar xf <DWL_DIR>/RFS/emtrion-image-sbc-rzn1d(-sdk)(-rt).tar.bz2 –C <NFS_ROOTFS>

4.5.2 SDK Root Filesystems

The SDK root filesystems are located in RFS, too.

RFS

├── emtrion-image-sbc-rzn1d-systemd-sdk(-rt).tar.bz2

└── emtrion-image-sbc-rzn1d-sdk(-rt).tar.bz2

The extracted SDK Root Filesystem is part of the SDK and for development purpose and not

suitable for normal use. You need this root filesystem during the development for your

applications. How you can boot the installed root filesystem using NFS is described in the

paragraph SDK Root Filesystem chapter 7.1.2.6.3.7

4.5.3 SDK-Installer

Like the target root filesystems, there are SDK installers each for Preempt-RT and none for

the sysvinit and the systemd RFS. They are located in the corresponding subdirectories.

SDKs

 none-RT

├── poky-glibc-x86_64-emtrion-image-sbc-rzn1d-sdk-armv7vet2hf-vfpv4d16-sbc-

 rzn1d- toolchain-3.1.2.sh

 └── poky-glibc-x86_64-emtrion-image-sbc-rzn1d-systemd-sdk-armv7vet2hf-

vfpv4d16- sbc-rzn1d-toolchain-3.1.2.sh

 RT

 ├── poky-glibc-x86_64-emtrion-image-sbc-rzn1d-sdk-armv7vet2hf-vfpv4d16-sbc-

 rzn1d- toolchain-3.1.2.sh

 └── poky-glibc-x86_64-emtrion-image-sbc-rzn1d-systemd-sdk-armv7vet2hf-

vfpv4d16- sbc-rzn1d-toolchain-3.1.2.sh

How are using the SDK installer is described in chapter 7.1.

SBC-RZN1D (Rev006) 15/26

5 The meta-layer for SBC-RZN1D

NOTE: If you do not want to create your own root filesystems, you can skip this chapter.

The meta-layer meta-emtrion-rzn1 is based on the kernel recipe and U-Boot recipe from

Renesas for the RZ/N1 SoCs with some additions to adapt emtrion’s board SBC-RZN1D.

The meta-layer supports none RT and RT images and is located in

meta-layer

└── meta-emtrion-rzn1

If you have not already installed the meta-layer to <INST_DIR>, please do it now.

5.1 Preparing the environment with or without RT support

Before creating an image, you will have to prepare the build environment accordingly. You

can define whether are creating images with Preempt-RT or none. First go to the

<INST_DIR>/meta-emtrion-rzn1 directory and execute the setup script:

❖ RT

➢ RT=y source setup_environment

❖ none RT

➢ source setup_environment

This will download all the needed yocto layers and prepares the environment. At the end of

the setup process the build environment is prompted with some information.

SBC-RZN1D (Rev006) 16/26

Addition to the supported MACHINE you will see the target images can be created and RT is

activated or not. In the above case we setup the environment with RT=y.

5.2 Creating the images

Now it’s time to start building images for emtrion’s board SBC-RZN1D.

The build process is done in four steps and is identical in case of RT or not. The first step is

common for the sysvinit and systemd images. The other three steps are dependent on

sysvinit or systemd.

5.2.1 core-image-purs

The first step creates an initramfs which is part of emPURS (emtrion Production, Update and

Recovery System):

 bitbake core-image-purs

5.2.2 emtrion-image-sbc-rzn1d(-systemd)

The second one creates the target root filesystem image:

bitbake emtrion-image-sbc-rzn1d(-systemd)

5.2.3 emtrion-image-sbc-rzn1d(-systemd)-sdk

The third creates the SDK root filesystem image:

bitbake emtrion-image-sbc-rzn1d(-systemd)-sdk

SBC-RZN1D (Rev006) 17/26

5.2.4 SDK installer

After you have created the SDK root filesystem image, you can now generate the SDK

installer:

bitbake emtrion-image-sbc-rzn1d(-systemd)-sdk -c populate_sdk

5.2.5 Miscellaneous

Due to the meta-layer contains recipes for the kernel and U-Boot, you have the possibility to

create these binaries separately. But this is not necessary because kernel and U-Boot are

automatically created and included in the RFS by step 2 as well by step 3.

• U-Boot and SPL generation

o bitbake u-boot-rzn1

• kernel generation

o bitbake linux-rzn1(-rt)

5.3 Output files

The images or binaries produced by the previous bitbake processes are installed in the two

central directories of the build system.

<BUILD_DIR>/emtrion/machines/sbc-rzn1d/tmp/deploy/images/sbc-rzn1d

and

<BUILD_DIR>/emtrion/machines/sbc-rzn1d/tmp/deploy/sdk

The names of the RFS images, depend on the RT is activated or not. Following the outputs

are listed.

Images description

u-boot.img U-Boot

spl-rel.spkg SPL

zImage Linux Kernel

sbc-rzn1d.dtb Device tree RFS

sbc-rzn1d-rdsk.dtb Device tree for

emPURS

initramfs-sbc-rzn1d.cpio.gz initramfs

emtrion-image-sbc-rzn1d(-rt).tar.bz2 RFS

emtrion-image-sbc-rzn1d-sdk(-rt).tar.bz2 RFS for SDK

emtrion-image-sbc-rzn1d-systemd(-rt).tar.bz2 RFS(systemd+)

emtrion-image-sbc-rzn1d-systemd-sdk(-rt).tar.bz2 RFS for SDK

poky-glibc-x86_64-emtrion-image-sbc-rzn1d-sdk-armv7vet2hf-

vfpv4d16-sbc-rzn1d-toolchain-3.1.2.sh

SDK installer

poky-glibc-x86_64-emtrion-image-sbc-rzn1d-systemd-sdk-

armv7vet2hf-vfpv4d16-sbc-rzn1d-toolchain-3.1.2.sh

SDK installer

SBC-RZN1D (Rev006) 18/26

5.3.1 Root Filesystem

As shown in the list above, the output of the RFS is a tar.bz2 archive. You can decompress it

using the tar command. For test purpose we recommend to decompress the archive to the

<NFS_ROOTFS>. Be sure the <NFS_ROOTFS> is empty before decompressing.

From the prompt at the build terminal <BUILD_DIR>/emtrion/machines/sbc-rzn1d

call sudo tar xf ./tmp/deploy/images/sbc-rzn1d/<rootfs-name>.tar.bz2 -C

<NFS_ROOTFS>

Don’t forget “sudo” otherwise the kernel won’t be able to modify the files during start up of

the system.

5.3.2 boot directory

The directory structure of the root file system includes a directory /boot. Among the located

files there is a file uboot_script.

This text file implements some U-Boot command sequences. You can use it for the purpose

of updating and booting via network, like kernel, U-Boot and RFS.

However, the environment of the U-Boot has to be set up before. This is discussed in detail in

chapter 6.3.1.

SBC-RZN1D (Rev006) 19/26

6 U-Boot Bootloader

The basic task of U-Boot is to load the operating system from bulk memory into RAM and

then start the kernel. You can also use it to initiate an update of the RFS and of U-Boot itself.

Furthermore you can configure the medium the operating system should be booted from, for

example eMMC, NFS or a serial terminal.

6.1 Basic U-Boot operation

To work with U-Boot, first use a terminal program like picocom to connect to the serial line of

the board. As soon as the U-Boot prompt appears in the terminal, U-Boot is ready to receive

commands. The general U-Boot documentation can be found here:

http://www.denx.de/wiki/U-Boot/Documentation

U-Boot has a set of environment variables which are used to store information needed for

booting the operating system. Variables can contain information such as IP addresses, but

they can also contain a whole script of actions to perform sequentially. The following

commands explain the basic handling of environment variables:

U-Boot command Explanation

printenv [variable] This shows the value of the specified variable. If no variable is

specified, the whole environment is shown.

setenv [variable] [value] Set a variable to a specific value. If no value is specified, the

variable gets deleted.

saveenv Make your changes permanent, so they remain after power off or

reboot.

6.2 The uboot_script

The uboot_script provides some helpful command sequences for the purpose of updating

and booting. The script is necessary for booting and is part of the RFS. It is located in the

directory /boot.

At power on, u-boot looks for that script in the located RFS at the flash and loads it into its

environment. Then it starts the corresponding boot process.

To realize this behavior the bootcmd is defined to

• run import.uboot_script && $bootx

The variable bootx presents the boot type and is defined to

• flash_boot as default

http://www.denx.de/wiki/U-Boot/Documentation

SBC-RZN1D (Rev006) 20/26

6.2.1 Implemented commands

Using the supported commands assumes either a previous saved environment based on the

uboot_script or importing the uboot_script either by loading from flash or remote, like TFTP

or NFS.

Importing from flash assumes a suitable RFS is located at the eMMC and looks like from the

u-boot prompt as

• run import.uboot_script

The table lists some of the interested commands supported by the uboot_script.

Commando loading mode Purpose active

update_uboot NFS, TFTP updating u-boot y

update_spl NFS, TFTP updating spl y

update_cm3 NFS, TFTP updating cm3

firmware

y

start_cm3 local loading and

starting cm3

firmware from

nor flash

n

delete_env local deleting

environment in

nor flash

y

net_boot NFS booting from NFS y

restore_sys NFS, TFTP restore system y

update_rfs NFS, TFTP updating RFS y

Using a command needs setting some variables. These can be one or more of the following

variables.

Variable Value (def. → *) depends on

ip-method • static

• dhcp*

lmode • nfs

• tftp

ipaddr

netmask

ipaddr for target

network mask

ip-method(static)

serverip ipaddr of host

nfsroot location inside the exported <NFS_SHARE> lmode(nfs)

bootdir • /boot

• location inside <TFTP_DIR>

➢ net_boot

➢ lmode tftp

SBC-RZN1D (Rev006) 21/26

6.3 Using U-Boot to change boot device or update parts of the system

This chapter describes how U-Boot has to be setup for updating and booting.

Performing of any of the tasks requires the IP-address of the host. For that, you have to

identify the IP-address, first.

At a Debian host you get the address by entering sudo ip addr in the terminal.

Take the IP address of the corresponding network adapter and write down it for later use.

6.3.1 Boot setup and updating the RFS

Updating of the RFS and U-Boot is possible by using NFS as well by TFTP. For the RFS we

recommend NFS, because it is much faster.

With the next sections we describe updating of the following images

➢ RFS → emtrion-image-sbc-rzn1d(-rt).tar.bz2

➢ U-Boot → u-boot.img

➢ SPL → spl-rel.spkg

To get ahead we assume the host system is prepared as described in 4.2 by the following

requirements

➢ installed NFS, with <NFS_SHARE> is exported

➢ installed TFTP, with the tftp directory at <TFTP_DIR>

➢ emtrion’s update mechanism emPURS, <NFS_RESTORE>

6.3.1.1 Updating of an old U-Boot with a version not included the string sbc-rzn1d

As mentioned in the section 4.2.10, while a flashed U-Boot at the SBC-RZN1D does not

contain at least the string sbc-rzn1d in its version you have to update the SPL, U-Boot and

the target’s RFS. Below is a short instruction guide.

Updating of the SPL and U-Boot can be performed as before. First the SPL, immediately

following the U-Boot.

• provide the binaries spl-rel.spkg and u-boot.img at the <TFTP_DIR>

• power on the SBC-RZN1D and stop booting

• enter the command sequence below at the U-Boot prompt

o setenv serverip [ip-address of linux host]

o setenv ip-method dhcp

o run update_spl

o run update_uboot

o env default -a -f

o saveenv

o res

SBC-RZN1D (Rev006) 22/26

Updating the RFS we assume you have already installed emPURS as described in 4.2.9.

• provide the interested RFS at <NFS_RESTORE>/images

• enter the command sequence below at the U-Boot prompt

o setenv lmode nfs

o dhcp

o setenv serverip [ip-address of linux host]

o setenv nfsroot <NFS_RESTORE>

o ${lmode} ${loadaddr} ${nfsroot}/uboot_script

o env import -t ${loadaddr} ${filesize}

o run update_rfs

6.3.2 Updating the RFS (using NFS)

emtrion’s update mechanism expects a specific image name. This name is defined to

emtrion-image-sbc-rzn1d.tar.bz2. Subsequently, any interested RFS image has named to

that one, while copying to the directory images in <NFS_RESTORE>.

 cp *.tar.bz2 <NFS_RESTORE>/images/ image-sbc-rzn1d.tar.bz2.

Now you can use the following commands in the U-Boot prompt:

U-Boot # run import.uboot_script
U-Boot # setenv lmode nfs
U-Boot # setenv nfsroot <NFS_RESTORE>
U-Boot # setenv ip-method [dhcp or static]
U-Boor # setenv ipaddr [ip address for device, only needed for static ip]
U-Boot # setenv netmask [netmask for device, only needed for static ip]
U-Boot # dhcp [only needed by ip-method dhcp]
U-Boot # setenv serverip [ip-address of linux host]

After these settings you can start either the restore or update process. In comparison to the

first one, the second one does not delete the partition of the eMMC.

Enter the command

➢ run restore_sys

or

➢ run update_rfs

This starts the update process. Please be patient as the process of fetching the root filesystem

image via network and decompressing it to the flash storage can take a few minutes.

6.3.3 Updating of U-Boot bootloader (using TFTP)

Attention: If the board is turned off while updating the bootloader or another error occurs,

the board will be rendered unusable to you. Please only update the bootloader if you are

explicitly instructed to do so by emtrion.

SBC-RZN1D (Rev006) 23/26

If you have generated a new bootloader image u-boot.img as described in 5.2, copy it to the

folder <TFTP_DIR> at the linux host. Otherwise you can use the image delivered by emtrion .

Then you can start the update process with the following command in U-Boot prompt:

U-Boot # run import.uboot_script
U-Boot # setenv lmode tftp
U-Boot # setenv bootdir “./”
U-Boot # setenv ip-method [dhcp or static]
U-Boot # setenv ipaddr [ip-address for device, only needed for static ip]
U-Boot # setenv netmask [netmask for device, only needed for static ip]
U-Boot # dhcp [only needed by ip-method dhcp]
U-Boot # setenv serverip [ip-address of linux host]
U-Boot # run update_uboot

6.3.4 Updating of U-Boot SPL (using TFTP)

Attention: If the board is turned off while updating the bootloader or another error occurs,

the board will be rendered unusable to you. Please only update the bootloader if you are

explicitly instructed to do so by emtrion.

It might be necessary to update the U-Boot SPL. The SPL binary spl-rel.spkg has to be in the

folder <TFTP_DIR> at the linux host. The current SPL binary is delivered by emtrion, too.

Then you can start the update process with the following command in U-Boot prompt:

U-Boot # run import.uboot_script
U-Boot # setenv lmode tftp
U-Boot # setenv bootdir “./”
U-Boot # setenv ip-method [dhcp or static]
U-Boot # setenv ipaddr [ip-address for device, only needed for static ip]
U-Boot # setenv netmask [netmask for device, only needed for static ip]
U-Boot # dhcp [only needed by ip-method dhcp]
U-Boot # setenv serverip [ip-address of VM]
U-Boot # run update_spl

6.3.5 Booting

The default boot device in U-Boot is determined by the variable “bootx”. If you want to set up

one of the following boot options as a default you have to set “bootx” to the command

mentioned below.

6.3.6 Boot from on-board flash

This is the default boot option configured when you receive the developer kit from emtrion

and is defined as follow.

bootx=flash_boot

bootcmd=run import.uboot_script && $bootx

SBC-RZN1D (Rev006) 24/26

To start it manually simply use this command:

U-Boot # run run import.uboot_script && run flash_boot

6.3.7 Boot via network using a NFS share

We assume there is a decompressed RFS image available at <NFS_ROOTFS>.

In order to boot via network you have to perform the following commands in U-Boot:

U-Boot # run import.uboot_script
U-Boot # setenv nfsroot <NFS_ROOTFS>
U-Boot # setenv bootdir /boot
U-Boot # setenv ip-method [dhcp or static]
U-Boor # setenv ipaddr [ip-address for device, only needed for static ip]
U-Boot # setenv netmask [netmask for device, only needed for static ip]
U-Boot # saveenv
U-Boot # dhcp [only needed by ip-method dhcp]
U-Boot # setenv serverip [ip-address of linux host]
U-Boot # run net_boot

Now the board should boot via network using the NFS-share <NFS_ROOTFS> in the linux

host.

If you want to make booting net_boot persistent for any reason, you can do that dependent

on the ip-method as below:

• dhcp:

o setenv bootcmd ‘run import.uboot_script && dhcp && run net_boot’

• static:

o setenv bootcmd ‘run import.uboot_script && run net_boot’

now make it persistent

• saveenv

back to flash_boot do

• setenv bootcmd ‘run import.uboot_script && $bootx’

• saveenv

SBC-RZN1D (Rev006) 25/26

7 SDK

In order to develop applications outside the Yocto build system (= outside the directory

<BUILD_DIR>) you need to set up your host development system. For this purpose the YP

offers several installation methods.

The bitbaking process described in chapter 5.2 creates an SDK installer containing the

toolchain and the sysroot, which includes and matches the target RFS. The installer is stored

in

<BUILD_DIR>/emtrion/machines/sbc-rzn1d/tmp/deploy/sdk

But you don’t have to do the steps of bitbaking in chapter 5.2 to create the SDK installer

yourself while emtrion has done that for you.

We assume you already have downloaded the SDK installers to <DWL_DIR>.

7.1 Installing the SDK

NOTE: emtrion has already done this step for its customers. You find the installed SDK in the

directory $SDK_DIR.

In order to install the SDK, go to

<BUILD_DIR>/emtrion/machines/sbc-rzn1d/tmp/deploy/sdk

or

<DWL_DIR>/SDKs/

❖ none-RT

❖ RT

and execute the interested installer

./poky-glibc-x86_64-emtrion-image-sbc-rzn1d(-systemd)-sdk-armv7vet2hf-vfpv4d16-

sbc-rzn1d-toolchain-3.1.2.sh

You are asked for the installation directory. You can either accept the suggested one or

create one yourself.

7.1.1 Setting up the SDK environment

Before you can start developing apps you have to setup the environment. For that purpose a

script is installed during the installation process of the SDK. The script is stored in the SDK’s

directory of <SDK_DIR>.

Performing the setup procedure, the script has to be sourced as follows.

SBC-RZN1D (Rev006) 26/26

source <SDK_DIR>/environment-setup- armv7vet2hf-vfpv4d16-poky-linux-gnueabi

The environment is only valid in the context of the terminal where this script has been called.

7.1.2 SDK Root Filesystem

Note, that in the directory <SDK_DIR>/sysroots/armv7vet2hf-vfpv4d16-poky-linux-

gnueabi you will find the unpacked SDK Root Filesystem.

In your development phase it’s recommended to use this SDK root filesystem on the target

by setting the variable nfsroot accordingly based on the U-Boot environment set in 6.3.7

Boot the target and stop the boot process by hitting a key. Then set the nfsroot variable

setenv nfsroot <SDK_DIR>/sysroots/armv7vet2hf-vfpv4d16-poky-linux-gnueabi

Then if desired save the environment

saveenv

Now you can boot the target

dhcp [only needed by ip-method dhcp]

run net_boot

and start developing and debugging on the target.

8 Further Information

8.1 Online resources

Further information can be found on the emtrion support pages.

https://support.emtrion.de

8.2 We support you

emtrion offers different kinds of services, among them Support, Training and Engineering.

Contact us at sales@emtrion.com if you need information or technical support.

https://support.emtrion.de/

